Patents by Inventor Michael A. Moffitt

Michael A. Moffitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210008389
    Abstract: An optical stimulation system includes a light source configured to produce light for optical stimulation; a light monitor; an optical lead coupled, or coupleable, to the light source and the light monitor; and a control module coupled, or coupleable, to the light source and the light monitor. The control module includes a memory, and a processor configured for automatically initiating a verification or measurement of a light output value; receiving, from the light monitor, a measurement of light generated by the light source; and when the measurement deviates from an expected light output value by more than a threshold amount, performing at least one of the following: sending a warning; or taking a corrective action.
    Type: Application
    Filed: March 19, 2019
    Publication date: January 14, 2021
    Inventors: Adam Thomas Featherstone, Emanuel Feldman, John Rivera, Claude Chabrol, Dennis Allen Vansickle, Michael A. Moffitt, Sarah Renault, Adrien Poizat
  • Publication number: 20210008388
    Abstract: An optical stimulation system includes a light source configured to produce light for optical stimulation; a light monitor; an optical lead coupled, or coupleable, to the light source and the light monitor; and a control module coupled, or coupleable, to the light source and the light monitor. The control module includes a memory, and a processor coupled to the memory and configured for receiving a request for verification or measurement of a light output value; in response to the request, receiving, from the light monitor, a measurement of light generated by the light source; and, based on the measurement, reporting a response to the request.
    Type: Application
    Filed: March 19, 2019
    Publication date: January 14, 2021
    Inventors: Dennis Allen Vansickle, Adam Thomas Featherstone, John Rivera, Claude Chabrol, Sarah Renault, Adrien Poizat, Michael A. Moffitt
  • Publication number: 20200398057
    Abstract: A system can utilize interleaving periods or waveforms to stimulate patient tissue and sense signals using the stimulation electrodes. For example, the system can utilize alternating therapeutic periods and sensing periods. As another example, the system can alternate between biphasic waveforms having opposite temporal orders of positive and negative phases. As another example, waveforms that differ in a parameter, such as amplitude or pulse width, can be interleaved to provide different information in the respective sensed signals.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Inventors: Rosana Esteller, Goran N. Marnfeldt, Michael A. Moffitt
  • Publication number: 20200391040
    Abstract: A neuromodulation customization system includes a field definition user interface, a neuromodulation signaling engine, and a supervisor engine. The field definition user interface is to facilitate entry of a customized electrotherapy field definition, with the field definition user interface including a set of input controls for defining field shape, field intensity, and field steering parameters of the customized electrotherapy field. The neuromodulation signaling engine is to produce commands for neuromodulation output circuitry to control generation of a customized electrotherapy field via a set of electrodes based on the customized electrotherapy field definition. The supervisor engine is to assess compliance of the customized electrotherapy field to be generated with applicable predefined criteria, and to modify generation of the customized electrotherapy field in response to an assessed non-compliance with the criteria.
    Type: Application
    Filed: August 27, 2020
    Publication date: December 17, 2020
    Inventors: Dheerendra Raghavendra Kashyap, Sarvari Grandhe, Natalie A. Brill, Bradley Lawrence Hershey, Changfang Zhu, Sridhar Kothandaraman, Dennis Zottola, Michael A. Moffitt
  • Publication number: 20200384270
    Abstract: A method and external device for providing sub-perception stimulation to a patient via an implantable stimulator device is disclosed. Stimulation parameters for the patient are determined that provide sub-perception stimulation to address a symptom of the patient. A schedule is determined to provide scheduled boluses of stimulation, where each bolus comprises a duration during which stimulation is applied to the patient in accordance with the stimulation parameters, and where the scheduled boluses are separated by off times when no stimulation is provided to the patient. Preferably, the duration of each of the scheduled boluses is 3 minutes or longer, and the duration of each of the off times is 30 minutes or greater. Additional boluses can be provided on demand in addition to the scheduled boluses by selecting an option on the external device, although the provision of such additional boluses may be constrained by a lockout period.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Que T. Doan, Michael A. Moffitt
  • Patent number: 10850101
    Abstract: A neuromodulation targeting system includes a GUI that facilitates selection of one or more neuromodulation target regions. The GUI provides an interactive display representing anatomy of a patient with user-selectable portions corresponding to a plurality of predefined anatomical regions associated with distinct localized clinical effects of neuromodulation. The system further includes a targeting selector engine that is responsive to user selection of a first portion of the interactive display by configuring delivery of neuromodulation therapy to a first target region to produce a first localized clinical effect in the patient at a location corresponding to the first portion of the display, upon administration of the neuromodulation therapy to the patient.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: December 1, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Bradley Lawrence Hershey, Michael A. Moffitt
  • Patent number: 10842997
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 24, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri
  • Publication number: 20200353264
    Abstract: An example of a system may include a processor; and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of: patient input, clinician input, or automatic input; use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set; and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Application
    Filed: May 27, 2020
    Publication date: November 12, 2020
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Patent number: 10806934
    Abstract: A neuromodulation customization system includes a field definition user interface, a neuromodulation signaling engine, and a supervisor engine. The field definition user interface is to facilitate entry of a customized electrotherapy field definition, with the field definition user interface including a set of input controls for defining field shape, field intensity, and field steering parameters of the customized electrotherapy field. The neuromodulation signaling engine is to produce commands for neuromodulation output circuitry to control generation of a customized electrotherapy field via a set of electrodes based on the customized electrotherapy field definition. The supervisor engine is to assess compliance of the customized electrotherapy field to be generated with applicable predefined criteria, and to modify generation of the customized electrotherapy field in response to an assessed non-compliance with the criteria.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: October 20, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dheerendra Raghavendra Kashyap, Sarvani Grandhe, Natalie A. Brill, Bradley Lawrence Hershey, Changfang Zhu, Sridhar Kothandaraman, Dennis Zottola, Michael A. Moffitt
  • Patent number: 10776456
    Abstract: A system for visualizing clinical effects can perform the following actions: obtain, for each of multiple stimulation instances, an estimation of a region stimulated during the stimulation instance and at least one assessment for at least one stimulation effect or stimulation side effect; assign, for each of the stimulation instances, a tag, selected from multiple tags, to each one of multiple voxels within the region stimulated during the stimulation instance, where the tag is selected based on the at least one assessment for the stimulation instance; and assign a voxel type, selected from multiple voxel types, to each of multiple voxels based on the tags assigned to the voxels. Optionally, the actions can also include display, on a display, a representation of multiple voxels with each of the displayed voxels having a graphical feature associated with the voxel type assigned to that voxel.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: September 15, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Richard Mustakos, Michael A. Moffitt
  • Patent number: 10744330
    Abstract: An external control device for use with a neurostimulation system having a plurality of electrodes capable of conveying an electrical stimulation field into tissue in which the electrodes are implanted is provided. The external control device comprises a user interface having one or more control elements, a processor configured for generating stimulation parameters designed to modify the electrical stimulation field relative to one or more neurostimulation lead carrying the electrodes. The external control device further comprises output circuitry configured for transmitting the stimulation parameters to the neurostimulation system.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: August 18, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman, James Carl Makous
  • Publication number: 20200254256
    Abstract: Software for providing a Graphical User Interface (GUI) for use in a clinician programmer for programming an implantable pulse generator (IPG) or external trial stimulator (ETS) is disclosed. A user may define in the GUI multiple pole configurations (e.g., monopoles, bipoles, etc.) which may be used independently to provide stimulation to a patient via the IPG or ETS's electrode array. Selected of the pole configurations can be linked or associated as a group in the GUI and used to concurrently provide stimulation. The pole configuration group may be steered or moved in the electrode array using a single movement instruction which moves all pole configurations in the group simultaneously. This allows the relative positions of the pole configurations in the group to remain constant as the group is moved.
    Type: Application
    Filed: January 28, 2020
    Publication date: August 13, 2020
    Inventors: Michael A. Moffitt, Que T. Doan
  • Patent number: 10716946
    Abstract: A method and system include a processor that outputs a characterization of a correspondence between a volume of estimated tissue activation and a target and/or side effect stimulation volume, and/or that provides controls by which to modify thresholds and/or amounts according to which the volume of estimated activation is to correspond to the target volume.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 21, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Hemant Bokil, Mark Pierre, Keith R. Carlton, Michael A. Moffitt, Richard Mustakos, Dean Chen
  • Publication number: 20200222704
    Abstract: A method of treating a patient and on external programmer for use with a neurostimulator. Electrical stimulation energy is conveyed into tissue of the patient via a specified combination of a plurality of electrodes, thereby creating one or more clinical effects. An influence of the specified electrode combination on the clinical effect(s) is determined. An anatomical region of interest is displayed in registration with a graphical representation of the plurality of electrodes. The displayed anatomical region of interest is modified based on the determined influence of the specified electrode combination on the clinical effect(s).
    Type: Application
    Filed: April 1, 2020
    Publication date: July 16, 2020
    Inventors: Michael A. Moffitt, John J. Reinhold
  • Patent number: 10709893
    Abstract: A system for a tissue stimulator coupled to an array of electrodes. The system comprises a user-controlled input device configured for generating control signals, and at least one processor configured for generating a plurality of stimulation parameter sets in response to the control signals that, when applied to the electrodes, will shift electrical current between electrodes to modify a region of tissue activation. The processor(s) is further configured for computing an estimate of the region of tissue activation, and for generating display signals capable of prompting a monitor to display an animated graphical representation of the computed estimate of the region of tissue activation.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 14, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Peter J. Yoo, Michael A. Moffitt, Kerry Bradley
  • Patent number: 10695567
    Abstract: A neurostimulation paddle lead, method of neurostimulation, and neurostimulation system are provided. The neurostimulation paddle lead carries a plurality of electrodes comprising at least four columns of electrodes having a spacing between two inner electrode columns less than a spacing between the inner electrode columns and adjacent outer electrode columns. The inner electrode columns may also be longitudinally offset from the outer electrode columns. The methods and neurostimulation systems steer current between the electrodes to modify a medial-lateral electrical field created adjacent spinal cord tissue.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 30, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Dongchul Lee, Kerry Bradley, David K. L. Peterson
  • Publication number: 20200197704
    Abstract: Methods and systems for testing and treating spinal cord stimulation (SCS) patients are disclosed. Patients are eventually treated with sub-perception (paresthesia free) therapy. However, supra-perception stimulation is used during “sweet spot searching” during which active electrodes are selected for the patient. This allows sweet spot searching to occur much more quickly and without the need to wash in the various electrode combinations that are tried. After selecting electrodes using supra-perception therapy, therapy is titrated to sub-perception levels using the selected electrodes. Such sub-perception therapy has been investigated using pulses at or below 10 kHz, and it has been determined that a statistically significant correlation exists between pulse width (PW) and frequency (F) in this frequency range at which SCS patients experience significant reduction in symptoms such as back pain.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: Que T. Doan, Jianwen Gu, Ismael Huertas Fernandez, Rosana Esteller, Michael A. Moffitt
  • Patent number: 10675457
    Abstract: A neurostimulation paddle lead, method of neurostimulation, and neurostimulation system are provided. The neurostimulation paddle lead carries a plurality of electrodes comprising at least four columns of electrodes having a spacing between two inner electrode columns less than a spacing between the inner electrode columns and adjacent outer electrode columns. The inner electrode columns may also be longitudinally offset from the outer electrode columns. The methods and neurostimulation systems steer current between the electrodes to modify a medial-lateral electrical field created adjacent spinal cord tissue.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: June 9, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Dongchul Lee, Kerry Bradley, David K. L. Peterson
  • Publication number: 20200155859
    Abstract: A method or system for facilitating the determining and setting of stimulation parameters for programming an electrical stimulation system using closed loop programming is provided. For example, pulse generator feedback logic is executed by a processor to interface with control instructions of an implantable pulse generator by incorporating one or more machine learning engines to automatically generate a proposed set of stimulation parameter values that each affect a stimulation aspect of the implantable pulse generator, receive one or more clinical responses and automatically generate a revised set of values taking into account the received clinical responses, and repeating the automated receiving of a clinical response and adjusting the stimulation parameter values taking the clinical response into account, until or unless a stop condition is reach or the a therapeutic response is indicated within a designated tolerance.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: David Blum, Sherry Lin, Hemant Bokil, Michael A. Moffitt
  • Patent number: 10653885
    Abstract: A system for a neurostimulator coupled to electrodes, and a method of providing therapy to a patient using the electrodes implanted within the patient. A target multipole relative to the electrodes is defined. The target multipole is emulated by defining an initial electrical current distribution for the electrodes, such that a first set of active electrodes respectively has electrical current values of a first polarity. Each of the electrical current values of the first polarity is compared to a first threshold value, and at least one of the electrodes in the first active electrode set is zeroed-out based on the comparison. The electrical current value of each of the zeroed-out electrode(s) is redistributed to remaining ones of the electrodes to define a new electrical current distribution for the electrodes. Electrical current is conveyed to the electrodes in accordance with the new electrical current distribution, thereby providing the therapy.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: May 19, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman, Prakash Rao