Patents by Inventor Michael A. Moffitt

Michael A. Moffitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190344081
    Abstract: A system is disclosed in one example which allows for modelling the wellness of a given Implantable Pulse Generator (IPG) patient. The modelling, embodied in an algorithm, uses one or more qualitative measurements and one or more quantitative measurements taken from the patient. The algorithm correlates the qualitative measurements to the various quantitative measurements to eventually, over time, learn which quantitative measurements best correlate to the qualitative measurements provided by the patient. The algorithm can then using current quantitative measurements predict a wellness factor or score for the patient, which is preferably weighted to favor the quantitative measurements that best correlate to that patient's qualitative assessment of therapy effectiveness. Additionally, the wellness factor may be used to adjust the stimulation program that the IPG device provides to the patient.
    Type: Application
    Filed: April 24, 2019
    Publication date: November 14, 2019
    Inventor: Michael A. Moffitt
  • Publication number: 20190329047
    Abstract: Methods and systems can facilitate identifying effective electrodes and other stimulation parameters, as well as determining whether to use cathodic and anodic stimulation. Alternately, the methods and systems may identify effective electrodes and other stimulation parameters based on preferential stimulation of different types of neural elements. These methods and systems can further facilitate programming an electrical stimulation system for stimulating patient tissue.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 31, 2019
    Inventors: Michael A. Moffitt, Stephen Carcieri
  • Publication number: 20190329025
    Abstract: Medical device systems, methods, and algorithms are disclosed for providing complex stimulation waveforms. The waveforms may selectively modulate or activate specific neural targets or selected ratios of specific neural targets. Some of the waveforms include pre-pulse phases defined by parameters, the value of which changes during the pre-pulse phase. Also disclosed herein are graphical user interfaces (GUIs) that allow the selection of waveforms configured to selectively modulate or activate specific neural targets or selected ratios of the neural targets. Adjustable parameters of the waveforms are adjusted automatically based on selection of user-defined parameters.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 31, 2019
    Inventors: Michael A. Moffitt, G. Karl Steinke, Richard Mustakos
  • Publication number: 20190329024
    Abstract: Interfaces are disclosed for configuring the parameters of anodic and cathodic stimulation that is provided by an implantable medical device. The interfaces enable the specification of transitions between anodic and cathodic modes of stimulation and continuous interleaving of anodic and cathodic modes of stimulation. Transitions between anodic and cathodic modes of stimulation can include linear or user-customized adjustments of stimulation parameters of the anodic and cathodic modes during a transition period. Continuous interleaving of anodic and cathodic modes of stimulation can include repeating, continuous adjustments of stimulation parameters of the anodic and cathodic modes according to user-customized parameters and user-defined time apportionments. Interfaces additionally provide information regarding the relative energy usages of the different stimulation modes and visualizations of the effects of adjustments of the stimulation modes on energy usage.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 31, 2019
    Inventors: Sridhar Kothandaraman, Richard Mustakos, Michael A. Moffitt, Chirag Shah, Peter J. Yoo, Vikrant Venkateshwar Gunna Srinivasan
  • Publication number: 20190329051
    Abstract: A system may comprise a controller configured to implement an algorithm on a received input to produce an output, and a system input operably connected to the controller and configured for use to enter at least one input into the algorithm. The at least one input may include: one or more sensor inputs or one or more inputs from smart appliances or one or more user inputs regarding at least one of time of day or mental or physical state; or at least one of a user-inputted disease, a user-inputted disease state, or a user-inputted symptom-related information into the algorithm. The controller may be configured to provide instructions through the system output to implement a system action. The algorithm implemented by the controller may be configured to identify one, or a combination of more than one, of the neuromodulation modes as a candidate neuromodulation mode based on the input(s).
    Type: Application
    Filed: April 26, 2019
    Publication date: October 31, 2019
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman, Chirag Shah, Vikrant Venkateshwar Gunna Srinivasan, Richard Mustakos
  • Publication number: 20190329049
    Abstract: Methods and systems can facilitate visualizing cathodic and anodic stimulation separately. Alternately, the methods and systems may separately visualize stimulation of different neural elements, such as nerve fibers and neural cells. These methods and systems can further facilitate programming an electrical stimulation system for stimulating patient tissue.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 31, 2019
    Inventors: Stephen Carcieri, Vikrant Gunna Srinivasan Venkateshwar, Chirag Shah, Peter J. Yoo, Michael A. Moffitt, Sridhar Kothandaraman
  • Publication number: 20190329039
    Abstract: Recognizing that anodic stimulation may require higher amplitudes or charge than cathodic stimulation in some tissues, new pulsing waveforms for a stimulator device, and particularly useful during monopolar stimulation, are described employing therapeutically-effective anodic and cathodic stimulation pulses at the lead-based electrode(s). The pulses are monophasic, with the amplitude or charge of the anodic monophasic pulses being higher than the cathodic monophasic pulses. To provide charge balance at each electrode, a pulse packet may be defined having a plurality of cathodic monophasic pulses and perhaps only a single anodic monophasic pulse. Because the polarity of cathodic monophasic pulses in each packet may charge balance with the anodic monophasic pulse(s), active charge recovery such as by the use of biphasic pulses may not be necessary, although passive charge recovery can be used if desired.
    Type: Application
    Filed: April 2, 2019
    Publication date: October 31, 2019
    Inventors: Goran N. Marnfeldt, Michael A. Moffitt, Stephen Carcieri
  • Patent number: 10449360
    Abstract: An example of a neurostimulation system may include a storage device, a programming control circuit, and a graphical user interface (GUI). The storage device may be configured to store individually definable waveforms. The programming control circuit may be configured to generate stimulation parameters controlling the delivery of the neurostimulation pulses according to a pattern. The GUI may be configured to define the pattern using one or more waveforms selected from the individually definable waveforms. The GUI may display waveform tags each selectable for access to a waveform of the individually definable waveforms, and display a waveform builder in response to selection of one of the waveform tags. The waveform builder may present a graphical representation of the accessed waveform and allow for the accessed waveform to be adjusted by editing the graphical representation of the accessed waveform on the GUI.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: October 22, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman
  • Patent number: 10441781
    Abstract: This document discusses, among other things, systems and methods for programming neuromodulation therapy to treat neurological or cardiovascular diseases. A system includes an input circuit that receives a modulation magnitude representing a level of stimulation intensity, a memory that stores a plurality of gain functions associated with a plurality of modulation parameters, and a electrostimulator that may generate and deliver an electrostimulation therapy. A controller may program the electrostimulator with the plurality of modulation parameters based on the received modulation magnitude and the plurality of gain functions, and control the electrostimulator to generate electrostimulation therapy according to the plurality of modulation parameters.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Michael A. Moffitt
  • Publication number: 20190290906
    Abstract: A method of treating an ailment suffered by a patient using one or more electrodes adjacent spinal column tissue of the patient, comprises delivering electrical modulation energy from the one or more electrodes to the spinal column tissue in accordance with a continuous bi-phasic waveform having a positive phase and a negative phase, thereby modulating the spinal column tissue to treat the ailment. An implantable electrical modulation system, comprises one or more electrical terminals configured for being coupled to one or more modulation leads, output modulation circuitry capable of outputting electrical modulation energy to the electrical terminal(s) in accordance with a continuous bi-phasic waveform, and control circuitry configured for modifying a shape of the continuous bi-phasic waveform, thereby changing the characteristics of the electrical modulation energy outputted to the electrode(s).
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Kerry Bradley, Rafael Carbunaru, Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie
  • Publication number: 20190290914
    Abstract: An electrical stimulation system includes a control module that provides electrical stimulation signals to an electrical stimulation lead coupled to the control module for stimulation of patient tissue. The system also includes a sensor to be disposed on or within the body of the patient and to measure a biosignal; and a processor to communicate with the sensor to receive the biosignal and to generate an adjustment to one or more of the stimulation parameters based on the biosignal. The adjustment can be configured and arranged to steer the electrical stimulation signals to stimulate a region of the patient tissue that is different, at least in part, from a region of the patient tissue stimulated prior to the adjustment. Alternatively or additionally, the biosignal is indicative of a particular patient activity and the adjustment is a pre-determined adjustment selected for the particular patient activity.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman
  • Publication number: 20190290907
    Abstract: Methods and systems for electrical stimulation can include obtaining a biosignal of the patient; altering at least one stimulation parameter of an electrical stimulation system in response to the biosignal; and delivering an electrical stimulation current to one or more selected electrodes of the electrical stimulation system using the at least one stimulation parameter. In some embodiments, a power spectrum is determined from the biosignal. In some embodiments, the biosignal is at least two different biosignals measured at the same or different locations on the patient and a coherence, correlation, or association between the two biosignal is determined.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Michael A. Moffitt, Hemant Bokil
  • Patent number: 10420940
    Abstract: A tissue stimulation system and computer software and method of monitoring a neurostimulation lead having a plurality of electrodes implanted within a patient (e.g., adjacent the spinal cord) is provided. Neurostimulation lead models are provided, each of which includes estimated electrical parameter data (e.g., electrical field potential data) corresponding to a predetermined position of the neurostimulation lead. Electrical energy is transmitted to or from the electrodes, and electrical parameter data (e.g., electrical field potential data) is measured in response to the transmitted electrical energy. The measured electrical parameter data is compared with the estimated electrical parameter data of each of the neurostimulation lead models, and a position of the neurostimulation lead is determined based on the comparison.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: September 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael A. Moffitt
  • Patent number: 10420938
    Abstract: A method of operating an implantable neuromodulator coupled to an electrode array implanted adjacent tissue of a patient having a medical condition comprises conveying electrical modulation energy to tissue of the patient in accordance with a modulation parameter set, wherein conveying the electrical modulation energy to tissue of the patient in accordance with the modulation parameter set stimulates dorsal horn neuronal elements more than dorsal column neuronal elements.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: September 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Changfang Zhu, Michael A. Moffitt, Bradley Lawrence Hershey
  • Patent number: 10391313
    Abstract: Methods, devices and systems for developing new therapy options for patient suffering from neurological disorders. An example may include the use of a therapy patterning system that allows significant freedom to program therapy patterns using arbitrary shapes and functions. For such patterning to be implemented, a physician may identify a condition needing new and/or alternative therapy options, link the identified condition one or more therapy parameters, program, test and assess the therapy. The process may include multiple iterations to address an initial condition and then to mitigate side effects of the initial therapy. Some embodiments comprises devices configured to deliver combinations of therapy patterns to accomplish at least first and second therapeutic purposes.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 27, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, G. Karl Steinke, Sridhar Kothandaraman, Bradley Lawrence Hershey, Changfang Zhu, Jordi Parramon, Goran N. Marnfeldt, John Rivera, Stephen Carcieri
  • Patent number: 10391315
    Abstract: An example of a system may include electrodes on at least one lead configured to be operationally positioned for use in modulating neural tissue where the neural tissue including dorsal horn tissue or nerve root tissue, a neural modulation generator, and a controller. The neural modulation generator may be configured to use at least some electrodes to generate a modulation field. The neural modulation generator maybe configured to use a programmed modulation parameter set to promote uniformity of the modulation field in the dorsal horn tissue. The controller may be configured to control the neural modulation generator to generate the modulation field in pulse trains of at least two pulses.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: August 27, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Changfang Zhu
  • Patent number: 10369363
    Abstract: A method of providing therapy to a patient having a medical condition comprises delivering electrical stimulation energy to the spinal cord of the patient in accordance with a stimulation program that preferentially stimulates dorsal horn neuronal elements over dorsal column neuronal elements in the spinal cord. The delivered electrical stimulation energy generates a plurality of electrical fields having different orientations that stimulate the dorsal horn neuronal elements.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: August 6, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Bradley Lawrence Hershey, Changfang Zhu
  • Patent number: 10369364
    Abstract: Methods and systems for electrical stimulation can include obtaining a biosignal of the patient; altering at least one stimulation parameter of an electrical stimulation system in response to the biosignal; and delivering an electrical stimulation current to one or more selected electrodes of the electrical stimulation system using the at least one stimulation parameter. In some embodiments, a power spectrum is determined from the biosignal. In some embodiments, the biosignal is at least two different biosignals measured at the same or different locations on the patient and a coherence, correlation, or association between the two biosignal is determined.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: August 6, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, Hemant Bokil
  • Patent number: 10357657
    Abstract: An electrical stimulation system includes a control module that provides electrical stimulation signals to an electrical stimulation lead coupled to the control module for stimulation of patient tissue. The system also includes a sensor to be disposed on or within the body of the patient and to measure a biosignal; and a processor to communicate with the sensor to receive the biosignal and to generate an adjustment to one or more of the stimulation parameters based on the biosignal. The adjustment can be configured and arranged to steer the electrical stimulation signals to stimulate a region of the patient tissue that is different, at least in part, from a region of the patient tissue stimulated prior to the adjustment. Alternatively or additionally, the biosignal is indicative of a particular patient activity and the adjustment is a pre-determined adjustment selected for the particular patient activity.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: July 23, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman
  • Patent number: 10350413
    Abstract: A computer implemented system and method generates a patient-specific model of patient response to stimulation on a neural element basis, receives user-input of target neuromodulation sites, and, based on the patient-specific model, determines which stimulation paradigm and settings, including stimulation sites, would result in the target neuromodulation, where the stimulation sites are not necessarily the same as the resulting neuromodulation sites. The system outputs a visual representation of the stimulation sites that would result in the target neuromodulation. The system monitors a system state and/or patient state and dynamically changes which stimulation program to implement based on the state.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: July 16, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, Rafael Carbunaru