Patents by Inventor Michael A. Schmitt

Michael A. Schmitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230226345
    Abstract: An electrical stimulation training and neuromuscular rehabilitation system including a machine-washable stimulation suit with multiple electrodes to provide controlled stimulation of various muscle groups is provided. The stimulation suit may also include one or more integrated biosensors to provide diagnostic capability in addition to stimulation. The system may also include a software platform executable on a user computing device (such as a tablet) that may facilitate control of the stimulation programs (e.g., intensity level, duration, isolation of individual muscle groups vs. full body stimulation) of one or more stimulation suits by the wearer or a fitness practitioner or trainer and/or that may facilitate intervention by a medical provider through a remote telemedicine platform.
    Type: Application
    Filed: March 21, 2023
    Publication date: July 20, 2023
    Inventors: Michael Howard Finkelstein, Dennis Michael Schmitt
  • Publication number: 20230203175
    Abstract: This disclosure relates to methods of treating cancer using a combination of an anti-CD40 antibody such as SEA-CD40, and an anti-PD-1 antibody such as pembrolizumab. The treatment can further include a chemotherapy.
    Type: Application
    Filed: April 27, 2021
    Publication date: June 29, 2023
    Inventors: Michael Schmitt, Shyra Gardai
  • Publication number: 20230192431
    Abstract: In some examples, a roll unwinder for a flying roll change includes a roll station for receiving a first material roll to be unwound, and a roll station for receiving a second material roll to be unwound after a roll change has occurred. A cut-off tool can sever a first web unwound from the first material roll, and includes a pressing element, to press the web against the outer surface of the second material roll. A supporting device can be transferred from an idle state into a working state in which the supporting device supports the web to be unwound, at least at the time of the severing process. The supporting device supports the web in a web path upstream from the cut-off tool. A receiving unit at a frame that carries the cut-off tool is movably mounted in the stand of the roll unwinder.
    Type: Application
    Filed: March 12, 2021
    Publication date: June 22, 2023
    Inventors: Bastian DEPPISCH, Walter RITTER, Michael SCHMITT
  • Patent number: 11667972
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: June 6, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11643686
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: May 9, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11634680
    Abstract: A predictive model is described that can predict parameter concentrations in the future based on initial, measured concentrations and historical data. A plurality of multivariate techniques can be used to construct the predictive model capable of forecasting concentrations over multiple and diverse cell lines. The predictive model is also scalable. In one embodiment, a future lactate concentration trajectory is determined and at least one condition within a bioreactor is changed or modified to maintain lactate concentration within desired ranges.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: April 25, 2023
    Assignee: LONZA LTD
    Inventors: Brandon John Downey, John Michael Schmitt, Jeffrey Francis Breit
  • Patent number: 11634771
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: April 25, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11629382
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: April 18, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11613781
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: March 28, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11608529
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: March 21, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Publication number: 20230060911
    Abstract: A removable cover to protect a connector between two conduits includes a single body having a wall surrounding an interior volume. The body has a neck sized to grip a portion of a first of the conduits. The body has a size-adjustable section to permit the body to be shortened or lengthened. The body has a casing section. The casing section protects a coupling connecting together the two conduits.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 2, 2023
    Inventors: Michael E. Miller, Benjamen Michael Schmitt
  • Publication number: 20230034961
    Abstract: The present invention relates to process for the preparation of a compound of formula (1), wherein R1 and R2 are independently from each other C1-C8alkyl, which comprises reacting a compound of formula (2), with a formaldehyde source in presence of a palladium or platinum catalyst at a hydrogen pressure of 5×108 mPa to 200×108 mPa.
    Type: Application
    Filed: December 14, 2020
    Publication date: February 2, 2023
    Inventors: Alexander Michael HAYDL, Michael SCHMITT, Klaus BECKER, Dirk BETHKE, Elena CAPITO', Johann-Peter MELDER
  • Patent number: 11566288
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11566285
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11566287
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11568955
    Abstract: A process and system for efficiently producing reference data that can be fed into a predictive model for predicting quality attribute concentrations in cell culture processes. A perfusion bioreactor is operated at pseudo-steady-state conditions and one or more attribute influencing parameters are manipulated and changed over time. As the one or more attribute influencing parameters are manipulated, one or more quality attributes are monitored and measured. In one embodiment, multiple quality attributes are monitored and measured in parallel. The quality attribute information is recorded in conjunction with the changes in the attribute influencing parameters. This information is then fed to the predictive model for propagating cell cultures in commercial processes and maintaining the cell cultures within desired preset limits.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: January 31, 2023
    Assignee: LONZA LTD
    Inventors: Brandon John Downey, John Michael Schmitt, Jeffrey Francis Breit
  • Patent number: 11566286
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11555220
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 17, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11554139
    Abstract: The present invention relates to pharmaceutical compositions with isolated and treated whole blood cells or Peripheral Blood Mononuclear Cells (PBMCs) as well as such pharmaceutical compositions for use in the prevention and/or treatment of organ or cell graft rejection in a human graft recipient.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: January 17, 2023
    Assignees: TOLEROGENIXX GMBH, UNIVERSITÄT HEIDELBERG
    Inventors: Christian Morath, Anita Schmitt, Matthias Schaier, Gerhard Opelz, Peter Terness, Christian Kleist, Volker Daniel, Caner Süsal, Michael Schmitt, Martin Zeier
  • Patent number: 11549144
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 10, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt