Patents by Inventor Michael A. Schmitt

Michael A. Schmitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11130996
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: September 28, 2021
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11118225
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: September 14, 2021
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11098359
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: August 24, 2021
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11047006
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: June 29, 2021
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Publication number: 20210034797
    Abstract: A computer-implemented method for testing a vehicle. The method includes: a first digital model of the vehicle is analyzed in a first driving simulation with regard to whether a safety-related requirement is satisfied, at least one second digital model of the vehicle is analyzed in at least one second driving simulation with regard to whether the safety-related requirement is satisfied, the at least one second digital model differing from the first digital model owing to a parameter variation which represents a structural change of the vehicle, depending on results of the first and the at least one second simulation, boundaries within which a structural change is able to be made or boundaries within which the parameters are able to be varied are determined, in order that the safety-related requirement remains satisfied.
    Type: Application
    Filed: May 28, 2020
    Publication date: February 4, 2021
    Inventor: Michael Schmitt
  • Publication number: 20200392580
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Publication number: 20200354666
    Abstract: A predictive model is described that can predict parameter concentrations in the future based on initial, measured concentrations and historical data. A plurality of multivariate techniques can be used to construct the predictive model capable of forecasting concentrations over multiple and diverse cell lines. The predictive model is also scalable. In one embodiment, a future lactate concentration trajectory is determined and at least one condition within a bioreactor is changed or modified to maintain lactate concentration within desired ranges.
    Type: Application
    Filed: November 20, 2018
    Publication date: November 12, 2020
    Inventors: Brandon John DOWNEY, John Michael SCHMITT, Jeffrey Francis BREIT
  • Publication number: 20200318185
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 10760127
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: September 1, 2020
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 10752951
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 25, 2020
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 10711304
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: July 14, 2020
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 10689699
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 23, 2020
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 10689700
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 23, 2020
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 10604804
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: March 31, 2020
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 10575627
    Abstract: A brush head (32) including a neck (40) having a brush neck (42); a plurality of bristle tufts (21), each of which includes a plurality of bristle strands with a free end (25) and a proximal end (23), the proximal end having a proximal end head portion (26); a plurality of retention rings (50), each configured to receive the proximal end of at least one of the plurality of bristle tufts; an elastomeric matrix (30) bonded to at least a portion of the brush neck, the plurality of retention rings, and the proximal end of the plurality of bristle tufts, wherein the proximal end head portion of each of the plurality of bristle tufts is configured to comprise a space (27) between the proximal end head portion and the respective retention ring.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: March 3, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Evan Dak Wah Dengler, Michael Schmitt
  • Publication number: 20200066369
    Abstract: A process and system for efficiently producing reference data that can be fed into a predictive model for predicting quality attribute concentrations in cell culture processes. A perfusion bioreactor is operated at pseudo-steady-state conditions and one or more attribute influencing parameters are manipulated and changed over time. As the one or more attribute influencing parameters are manipulated, one or more quality attributes are monitored and measured. In one embodiment, multiple quality attributes are monitored and measured in parallel. The quality attribute information is recorded in conjunction with the changes in the attribute influencing parameters. This information is then fed to the predictive model for propagating cell cultures in commercial processes and maintaining the cell cultures within desired preset limits.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 27, 2020
    Inventors: Brandon John Downey, John Michael Schmitt
  • Patent number: 10570451
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: February 25, 2020
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 10496652
    Abstract: Methods and apparatus are described for scoring documents in response, in part, to parameters related to the document, source, and/or cluster score. Methods and apparatus are also described for scoring a cluster in response, in part, to parameters related to documents within the cluster and/or sources corresponding to the documents within the cluster. In one embodiment, the invention may detect at least one document within the cluster; analyze a parameter corresponding to the document; and compute a cluster score based, in part, on the parameter, wherein the cluster score corresponds with at least one document within the cluster.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: December 3, 2019
    Assignee: Google LLC
    Inventors: Krishna Bharat, Jeffrey A. Dean, Michael Curtiss, Amitabh Singhal, Michael Schmitt
  • Publication number: 20190352714
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Application
    Filed: July 3, 2019
    Publication date: November 21, 2019
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Publication number: 20190338358
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt