Patents by Inventor Michael A. Spencer

Michael A. Spencer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150007370
    Abstract: The present invention discloses and claims methods and devices for the rapid mechanical isolation of monocot plant tissues suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating target plant tissues for use as transformable explants, and propagation of transgenic plants and plant tissues.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 1, 2015
    Inventors: Whitney R. Adams, JR., Brandon Davis, Lubomyr Kucher, Brenda A. Lowe, Michael Spencer, Michael T. Mann
  • Patent number: 8866245
    Abstract: We introduce a new technology for Manufactureable, High Power Density, High Volume Utilization Nuclear Batteries. Betavoltaic batteries are an excellent choice for battery applications which require long life, high power density, or the ability to operate in harsh environments. In order to optimize the performance of betavoltaic batteries for these applications or any other application, it is desirable to maximize the efficiency of beta particle energy conversion into power, while at the same time increasing the power density of an overall device. Various devices and methods to solve the current industry problems and limitations are presented here.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: October 21, 2014
    Assignee: Widetronix, Inc.
    Inventors: Michael Spencer, Mvs Chandrashekhar, Chris Thomas
  • Publication number: 20140299760
    Abstract: Systems and methods for automatic gain control in mass spectrometers are disclosed. An exemplary system may include a mass spectrometer, comprising a lens configured to receive a supply of ions, and a mass analyzer. The mass analyzer may include an ion trap for trapping the supplied ions. The mass analyzer may also include an ion detector for detecting ions that exit the ion trap. The lens may focus the ions non-uniformly based on mass of the ions to compensate for space charge effects reflected in a measurement output of the mass spectrometer. An exemplary method may include focusing an ion beam into a mass analyzer. The method may also include obtaining a mass spectrum and identifying a space charge characteristic based on the mass spectrum. The method may further include defocusing the lens based on the identified space charge characteristic, wherein defocusing the lens is configured to divert lighter ions away from the entrance aperture.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 9, 2014
    Applicant: 1ST DETECT CORPORATION
    Inventors: James Wylde, David Rafferty, Michael Spencer
  • Patent number: 8853488
    Abstract: The present invention provides methods for transforming monocot plants via a simple and rapid protocol, to obtain regenerated plants capable of being planted to soil in as little as 4-8 weeks. Associated cell culture media and growth conditions are also provided, as well as plants and plant parts obtained by the method. Further, a method for screening recalcitrant plant genotypes for transformability by the methods of the present invention is also provided. Further, a system for expanding priority development window for producing transgenic plants by the methods of the present invention is also provided.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 7, 2014
    Assignee: Monsanto Technology LLC
    Inventors: Jyoti R. Rout, Brenda A. Lowe, John Purcell, Anne Spelletich, Michael Spencer, Melissa Way
  • Publication number: 20140264006
    Abstract: Apparatuses and methods for performing mass analysis are disclosed. One such apparatus may include an ion trap device. The ion trap device may comprise a first end cap having a first aperture and a second end cap having a second aperture, wherein the first aperture and the second aperture may define an ejection axis. The ion trap device may also comprise a ring electrode substantially coaxially aligned between the first and second end caps. The ring electrode may include an opening extending along a radial direction of the ring electrode, wherein the radial direction is substantially perpendicular to the ejection axis. One such method may include ionizing a sample in an ion trap through an opening separating at least part of first and second ring sections of the ion trap and detecting ions ejected though an aperture on an end cap of the ion trap.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: 1st Detect Corporation
    Inventors: David RAFFERTY, Michael SPENCER
  • Publication number: 20140264013
    Abstract: A mass spectrometer system is disclosed. The mass spectrometer includes a vacuum chamber defining an enclosed evacuated space and an ion trap disposed in the enclosed space. The ion trap is configured to trap an ionized sample. The mass spectrometer further includes an ion detector coupled to the chamber at a location external to the chamber such that sample ions may exit the evacuated space and into the externally-coupled detector without loss of vacuum pressure.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: 1st Detect Corporation
    Inventors: David Rafferty, Michael Spencer
  • Publication number: 20140252224
    Abstract: An ion trap for a mass spectrometer is disclosed. The ion trap includes a ring electrode and first and second electrodes which are arranged on opposite sides of the ring electrode. The ring electrode and the first and second electrodes are configured to generate an electric field based on the received RF signal. The first electrode defines a first aperture and the second electrode defines a second aperture, the first aperture and the second aperture being asymmetric relative to each other and configured to generate a hexapole field.
    Type: Application
    Filed: November 18, 2013
    Publication date: September 11, 2014
    Applicant: 1st DETECT CORPORATION
    Inventors: David Rafferty, Michael Spencer
  • Publication number: 20140252215
    Abstract: Systems and methods are disclosed for calibrating mass spectrometers. In accordance with one implementation, a system comprises a calibrant chamber within a housing of a mass spectrometer. The system also comprises a permeation tube enclosed within the calibrant chamber, wherein the tube contains a calibrant chemical that continuously outgasses the calibrant chemical. The outgassed calibrant chemical may be introduced to the mass spectrometer for analysis. The system may also comprise a heating block to control the temperature of the calibrant chemical. The system may further comprise a valve that introduces a known amount of the calibrant chemical into the calibrant chamber. In accordance with the present disclosure, systems and methods are provided for calibrating a mass spectrometer abundance scale.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: 1st Detect Corporation
    Inventors: David Rafferty, James Wylde, Michael Spencer, Warren Mino
  • Publication number: 20140250977
    Abstract: A mass spectrometer for analyzing a sample may include an analysis chamber for analyzing the sample and a first vacuum pump operably connected to the analysis chamber, wherein the first vacuum pump operates to create a first vacuum state. The mass spectrometer may also include a sample-preparation chamber operably connected to the analysis chamber and a second vacuum pump that operates to create a second vacuum state, wherein the first vacuum state is a lower pressure than the second vacuum state. The second vacuum pump may be operably connected to the first vacuum pump in a first configuration, and the second vacuum pump may be operably connected to the sample-preparation chamber in a second configuration.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: 1st Detect Corporation
    Inventors: Michael Spencer, Warren Mino, David Rafferty
  • Publication number: 20140252222
    Abstract: A method and apparatus for performing mass spectrometry using an electron source, an ion trap, and a voltage-controlled lens located between the electron source and the ion trap. A controller applies a voltage to the lens. Features of the resulting output spectrum can be analyzed to determine whether to adjust the lens voltage.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Applicant: 1st Detect Corporation
    Inventors: David RAFFERTY, Michael SPENCER, James WYLDE, David Lorenz GARDNER, Warren MINO
  • Patent number: 8802456
    Abstract: This is a novel SiC betavoltaic device (as an example) which comprises one or more “ultra shallow” P+ N? SiC junctions and a pillared or planar device surface (as an example). Junctions are deemed “ultra shallow”, since the thin junction layer (which is proximal to the device's radioactive source) is only 300 nm to 5 nm thick (as an example). This is a betavoltaic device, made of ultra-shallow junctions, which allows such penetration of emitted lower energy electrons, thus, reducing or eliminating losses through electron-hole pair recombination at the surface.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: August 12, 2014
    Assignee: Widetronix, Inc.
    Inventors: Michael Spencer, Mvs Chandrashekhar
  • Patent number: 8784737
    Abstract: A chemical pre-concentrator includes a conduit defining a flow path between two ends and having a heating element disposed within the conduit, such that the heating element has at least one sorbent material deposited directly on at least a portion of a conductive surface of the heating element. Some such heating elements are in the form of electrically conductive strips defining both a plurality of apertures through the strip and a series of undulations spaced along the flow path.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 22, 2014
    Assignee: 1st Detect Corporation
    Inventors: David Rafferty, Michael Spencer, James Wylde, Pedro Ojeda, Thomas Bowden
  • Publication number: 20140190245
    Abstract: Processing a liquid sample (204) having an analyte (206) by reducing a pressure in a container (200) including the liquid sample to less than atmospheric pressure and maintaining a reduced pressure in the container. Reducing the pressure in the container (200) and optionally agitating the liquid sample increases an amount of vapor-phase analyte (206) above the liquid sample. In some cases, a concentration of the vapor-phase analyte is further increased, for example, with a chemical trap (502). The vapor-phase analyte can be provided to a chemical analyzer (302).
    Type: Application
    Filed: June 21, 2012
    Publication date: July 10, 2014
    Inventors: David Rafferty, Abrar Riaz, Michael Spencer, William R. Stott, James Wylde
  • Patent number: 8707689
    Abstract: An exhaust system for an internal combustion engine including an elongated tube for receiving exhaust gas and exhaust flow modification structure within the tube interior configured to cooperate with the elongated tube to produce a laminar flow of exhaust gas and modify the flow speed of the exhaust gas due to the venturi effect.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: April 29, 2014
    Assignee: Northern California Diagnostic Laboratories, Inc.
    Inventors: Michael Spencer-Smith, James Stewart Grant, Louis Walch, Adam Weidauer
  • Patent number: 8671671
    Abstract: An exhaust system for an internal combustion engine including an elongated tube for receiving exhaust gas and exhaust flow modification structure within the tube interior configured to cooperate with the elongated tube to produce a laminar flow of exhaust gas and modify the flow speed of the exhaust gas due to the venturi effect. The exhaust system includes two spaced structural components which form restricted a annular flow path to enhance the venturi effect.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: March 18, 2014
    Assignee: Northern California Diagnostic Laboratories
    Inventors: Michael Spencer-Smith, Louis Walch
  • Publication number: 20140049373
    Abstract: The system includes a 3D biometric image sensor and processing module operable to generate a 3D surface map of a biometric object, wherein the 3D surface map includes a plurality of 3D coordinates. The system performs one or more anti-spoofing techniques to determine a fake biometric.
    Type: Application
    Filed: August 17, 2013
    Publication date: February 20, 2014
    Applicant: Flashscan3D, LLC
    Inventors: Michael Spencer Troy, Raymond Charles Daley, Veeraganesh Yalla
  • Patent number: 8610055
    Abstract: An ion trap for a mass spectrometer is disclosed. The ion trap includes a ring electrode and first and second electrodes which are arranged on opposite sides of the ring electrode. The ring electrode and the first and second electrodes are configured to generate an electric field based on the received RF signal. The first electrode defines a first aperture and the second electrode defines a second aperture, the first aperture and the second aperture being asymmetric relative to each other and configured to generate a hexapole field.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 17, 2013
    Assignee: 1st Detect Corporation
    Inventors: David Rafferty, Michael Spencer
  • Publication number: 20130239253
    Abstract: The present invention provides methods for transforming monocot plants via a simple and rapid protocol, to obtain regenerated plants capable of being planted to soil in as little as 4-8 weeks. Associated cell culture media and growth conditions are also provided, as well as plants and plant parts obtained by the method. Further, a method for screening recalcitrant plant genotypes for transformability by the methods of the present invention is also provided. Further, a system for expanding priority development window for producing transgenic plants by the methods of the present invention is also provided.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 12, 2013
    Applicant: Monsanto Technology LLC
    Inventors: Jyoti R. Rout, Brenda A. Lowe, John Purcell, Anne Spelletich, Michael Spencer, Melissa Way
  • Patent number: 8487392
    Abstract: To increase total power in a betavoltaic device, it is desirable to have greater radioisotope material and/or semiconductor surface area, rather than greater radioisotope material volume. An example of this invention is a high power density betavoltaic battery. In one example of this invention, tritium is used as a fuel source. In other examples, radioisotopes, such as Nickel-63, Phosphorus-33 or promethium, may be used. The semiconductor used in this invention may include, but is not limited to, Si, GaAs, GaP, GaN, diamond, and SiC. For example (for purposes of illustration/example, only), tritium will be referenced as an exemplary fuel source, and SiC will be referenced as an exemplary semiconductor material. Other variations and examples are also discussed and given.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: July 16, 2013
    Assignee: Widetronix, Inc.
    Inventors: Michael Spencer, MVS Chandrashekhar
  • Patent number: 8395020
    Abstract: The present invention provides methods for transforming monocot plants via a simple and rapid protocol, to obtain regenerated plants capable of being planted to soil in as little as 4-8 weeks. Associated cell culture media and growth conditions are also provided, as well as plants and plant parts obtained by the method. Further, a method for screening recalcitrant plant genotypes for transformability by the methods of the present invention is also provided. Further, a system for expanding priority development window for producing transgenic plants by the methods of the present invention is also provided.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: March 12, 2013
    Assignee: Monsanto Technology LLC
    Inventors: Jyoti R. Rout, Brenda A. Lowe, John Purcell, Anne Spelletich, Michael Spencer, Melissa Way