Patents by Inventor Michael A. Stuber

Michael A. Stuber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150137307
    Abstract: An integrated circuit assembly is formed with an insulating layer, a semiconductor layer, an active device, first, second, and third electrically conductive interconnect layers, and a plurality of electrically conductive vias. The insulating layer has a first surface and a second surface. The second surface is below the first surface. A substrate layer has been removed from the second surface. The semiconductor layer has a first surface and a second surface. The first surface of the semiconductor layer contacts the first surface of the insulating layer. The active device is formed in a region of the semiconductor layer. The first electrically conductive interconnect layer forms an electrically conductive ring. The second electrically conductive interconnect layer forms a first electrically conductive plate above the electrically conductive ring and the region of the semiconductor layer.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 21, 2015
    Inventor: Michael A. Stuber
  • Publication number: 20150140782
    Abstract: An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface. A first active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the first active layer and formed on the second surface of the insulating layer. A substrate having a first surface and a second surface, with a second active layer formed in the first surface, is provided such that the first active layer is coupled to the second surface of the substrate.
    Type: Application
    Filed: December 16, 2014
    Publication date: May 21, 2015
    Inventors: Michael A. Stuber, Stuart B. Molin, Mark Drucker, Peter Fowler
  • Patent number: 9034732
    Abstract: Embodiments of the present invention provide for the provisioning of efficient support to semiconductor-on-insulator (SOI) structures. Embodiments of the present invention may additionally provide for SOI structures with improved heat dissipation performance while preserving the beneficial electrical device characteristics that accompany SOI architectures. In one embodiment, an integrated circuit is disclosed. The integrated circuit comprises a silicon-on-insulator die from a silicon-on-insulator wafer. The silicon on insulator die comprises an active layer, an insulator layer, a substrate, and a strengthening layer. The substrate consists of an excavated substrate region, and a support region, the support region is in contact with the insulator layer. The support region and the strengthening layer are configured to act in combination to provide a majority of a required stabilizing force to the silicon-on-insulator die when it is singulated from the silicon-on-insulator wafer.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 19, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Stuart B. Molin, Paul A. Nygaard, Michael A. Stuber
  • Patent number: 9029201
    Abstract: Embodiments of the present invention provide for the dissipation of heat from semiconductor-on-insulator (SOI) structures. In one embodiment, a method for fabricating an integrated circuit is disclosed. In a first step, active circuitry is formed in an active layer of a SOI wafer. In a second step, substrate material is removed from a substrate layer disposed on a back side of the SOI wafer. In a third step, insulator material is removed from the back side of the SOI wafer to form an excavated insulator region. In a fourth step, a thermal dissipation layer is deposited on said excavated insulator region. The thermal dissipation layer is thermally conductive and electrically insulating.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 12, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Paul A. Nygaard, Stuart B. Molin, Michael A. Stuber
  • Publication number: 20150108640
    Abstract: An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface, where the first surface of the insulating layer is less than 10 microns below an upper plane of the integrated circuit assembly. An active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the active layer and formed on the second surface of the insulating layer, and is also electrically connected to a printed circuit board. A method of fabricating an integrated circuit assembly includes coupling a handle wafer to the active layer of a semiconductor-on-insulator wafer, removing the substrate of the semiconductor-on-insulator, forming a bond pad connecting to the active layer on the exposed insulator surface, bonding the bond pad to a printed circuit board using a solder bump, and removing the handle wafer.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 23, 2015
    Inventors: Michael A. Stuber, Stuart B. Molin, Mark Drucker, Peter Fowler
  • Publication number: 20150102401
    Abstract: A vertical semiconductor device (e.g. a vertical power device, an IGBT device, a vertical bipolar transistor, a UMOS device or a GTO thyristor) is formed with an active semiconductor region, within which a plurality of semiconductor structures have been fabricated to form an active device, and below which at least a portion of a substrate material has been removed to isolate the active device, to expose at least one of the semiconductor structures for bottom side electrical connection and to enhance thermal dissipation. At least one of the semiconductor structures is preferably contacted by an electrode at the bottom side of the active semiconductor region.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Stuart B. Molin, Michael A. Stuber
  • Publication number: 20150069511
    Abstract: Embodiments of the present invention provide for the enhancement of transistors in a semiconductor structure using a strain layer. The structure comprises a patterned layer consisting of an excavated region and a pattern region, a strain layer located in the excavated region and on the pattern region, an active layer located above the strain layer, a field effect transistor formed in the active layer, and a handle layer located above the active layer. The field effect transistor comprises a source, a drain, and a channel. The channel lies completely within a lateral extent of the pattern region. The source and the drain each lie only partially within the lateral extent of the pattern region. The strain layer alters a carrier mobility of the channel. In some embodiments, the strain layer is introduced to the back side of a semiconductor-on-insulator structure.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: Paul A. Nygaard, Stuart B. Molin, Michael A. Stuber, Max Aubain
  • Patent number: 8954902
    Abstract: A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: February 10, 2015
    Assignee: Peregrine Semiconductor Corporation
    Inventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Mark L. Burgener, Alexander Dribinsky, Tae Youn Kim
  • Patent number: 8928068
    Abstract: A vertical semiconductor device (e.g. a vertical power device, an IGBT device, a vertical bipolar transistor, a UMOS device or a GTO thyristor) is formed with an active semiconductor region, within which a plurality of semiconductor structures have been fabricated to form an active device, and below which at least a portion of a substrate material has been removed to isolate the active device, to expose at least one of the semiconductor structures for bottom side electrical connection and to enhance thermal dissipation. At least one of the semiconductor structures is preferably contacted by an electrode at the bottom side of the active semiconductor region.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: January 6, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Stuart B. Molin, Michael A. Stuber
  • Patent number: 8921168
    Abstract: An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface, where the first surface of the insulating layer is less than 10 microns below an upper plane of the integrated circuit assembly. An active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the active layer and formed on the second surface of the insulating layer, and is also electrically connected to a printed circuit board. A method of fabricating an integrated circuit assembly includes coupling a handle wafer to the active layer of a semiconductor-on-insulator wafer, removing the substrate of the semiconductor-on-insulator, forming a bond pad connecting to the active layer on the exposed insulator surface, bonding the bond pad to a printed circuit board using a solder bump, and removing the handle wafer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 30, 2014
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Mark Drucker, Peter Fowler
  • Publication number: 20140377908
    Abstract: An integrated circuit chip is formed with an active layer and a trap rich layer. The active layer is formed with an active device layer and a metal interconnect layer. The trap rich layer is formed above the active layer. In some embodiments, the active layer is included in a semiconductor wafer, and the trap rich layer is included in a handle wafer.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Chris N. Brindle, Michael A. Stuber, Stuart B. Molin
  • Patent number: 8912646
    Abstract: An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface. A first active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the first active layer and formed on the second surface of the insulating layer. A substrate having a first surface and a second surface, with a second active layer formed in the first surface, is provided such that the first active layer is coupled to the second surface of the substrate.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 16, 2014
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Mark Drucker, Peter Fowler
  • Publication number: 20140346622
    Abstract: A semiconductor wafer is formed with a first device layer having active devices. A handle wafer having a trap rich layer is bonded to a top surface of the semiconductor wafer. A second device layer having a MEMS device or acoustic filter device is formed on a bottom surface of the semiconductor wafer. The second device layer is formed either by monolithic fabrication processes or layer-transfer processes.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventor: Michael A. Stuber
  • Publication number: 20140327077
    Abstract: An integrated circuit assembly comprises an insulating layer, a semiconductor layer, a handle layer, a metal interconnect layer, and transistors. The insulating layer has a first surface, a second surface, and a hole extending from the first surface to the second surface. The semiconductor layer has a first surface and a second surface, the first surface of the semiconductor layer contacting the first surface of the insulating layer. The handle layer is coupled to the second surface of the semiconductor layer. The metal interconnect layer is coupled to the second surface of the insulating layer, the metal interconnect layer being disposed within the hole in the insulating layer. The transistors are located in the semiconductor layer. The hole in the insulating layer extends to at least the first surface of the semiconductor layer. The metal interconnect layer electrically couples a plurality of the transistors to each other.
    Type: Application
    Filed: July 19, 2014
    Publication date: November 6, 2014
    Inventors: Michael A. Stuber, Stuart B. Molin, Chris Brindle
  • Publication number: 20140319698
    Abstract: A semiconductor structure is formed with first and second semiconductor wafers and a redistribution layer. The first semiconductor wafer is formed with a first active layer and a first interconnect layer. The second semiconductor wafer is formed with a second active layer and a second interconnect layer. The second semiconductor wafer is inverted and bonded to the first semiconductor wafer, and a substrate is removed from the second semiconductor wafer. The redistribution layer redistributes electrical connective pad locations on a side of the second semiconductor wafer. The redistribution layer also electrically contacts the first interconnect layer through a hole in the second active layer and the second interconnect layer.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Stuart B. Molin, Michael A. Stuber, Mark Drucker
  • Patent number: 8859347
    Abstract: Embodiments of the present invention provide for the removal of excess carriers from the body of active devices in semiconductor-on-insulator (SOI) structures. In one embodiment, a method of fabricating an integrated circuit is disclosed. In one step, an active device is formed in an active layer of a semiconductor-on-insulator wafer. In another step, substrate material is removed from a substrate layer disposed on a back side of the SOI wafer. In another step, an insulator material is removed from a back side of the SOI wafer to form an excavated insulator region. In another step, a conductive layer is deposited on the excavated insulator region. Depositing the conductive layer puts it in physical contact with a body of an active device in a first portion of the excavated insulator region. The conductive layer then couples the body to a contact in a second detached portion of the excavated insulator region.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: October 14, 2014
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Paul A. Nygaard
  • Publication number: 20140291860
    Abstract: An integrated circuit assembly comprises an insulating layer, a semiconductor layer, a handle layer, a metal interconnect layer, and transistors. The insulating layer has a first surface, a second surface, and a hole extending from the first surface to the second surface. The semiconductor layer has a first surface and a second surface, the first surface of the semiconductor layer contacting the first surface of the insulating layer. The handle layer is coupled to the second surface of the semiconductor layer. The metal interconnect layer is coupled to the second surface of the insulating layer, the metal interconnect layer being disposed within the hole in the insulating layer. The transistors are located in the semiconductor layer. The hole in the insulating layer extends to at least the first surface of the semiconductor layer. The metal interconnect layer electrically couples a plurality of the transistors to each other.
    Type: Application
    Filed: May 7, 2014
    Publication date: October 2, 2014
    Applicant: IO Semiconductor, Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Chris Brindle
  • Patent number: 8835281
    Abstract: An integrated circuit chip is formed with an active layer and a trap rich layer. The active layer is formed with an active device layer and a metal interconnect layer. The trap rich layer is formed above the active layer. In some embodiments, the active layer is included in a semiconductor wafer, and the trap rich layer is included in a handle wafer.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: September 16, 2014
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Chris Brindle, Michael A. Stuber, Stuart B. Molin
  • Publication number: 20140175637
    Abstract: An integrated circuit assembly includes a first substrate and a second substrate, with active layers formed on the first surfaces of each substrate, and with the second surfaces of each substrate coupled together. A method of fabricating an integrated circuit assembly includes forming active layers on the first surfaces of each of two substrates, and coupling the second surfaces of the substrates together.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: IO SEMICONDUCTOR, INC.
    Inventors: Michael A. Stuber, Stuart B. Molin
  • Publication number: 20140167834
    Abstract: A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.
    Type: Application
    Filed: July 22, 2013
    Publication date: June 19, 2014
    Applicant: Peregrine Semiconductor Corporation
    Inventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener, Alexander Dribinsky, Tae Youn Kim