Patents by Inventor Michael Andrew Gibson

Michael Andrew Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969795
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: April 30, 2024
    Assignee: Desktop Metal, Inc.
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20240128549
    Abstract: An iron-air battery including an iron electrode in contact with an anode current collector, wherein the iron electrode includes a plurality of channels; an oxygen reduction reaction electrode having a first surface facing the plurality of channels and an opposing second surface in contact with air; an oxygen evolution reaction electrode interdigitated with the plurality of channels of the iron electrode, wherein at least a portion of the oxygen evolution reaction electrode is disposed within the plurality of channels in a direction perpendicular to a plane of the oxygen reduction reaction electrode; and an electrolyte in contact with the iron electrode, the first surface of the oxygen reduction reaction electrode, the plurality of channels, and the oxygen evolution reaction electrode.
    Type: Application
    Filed: October 12, 2023
    Publication date: April 18, 2024
    Inventors: Joseph Stephen Manser, Christopher Thomas Reynolds, Karen Thomas-Alyea, Michael Chon, David Hooke, Michael Andrew Gibson, Yuto Takagi, Johanna Goodman, Robert Wesley Morgan, Valerie Christine Sacha, Angel Ruben Rivera, Joseph Anthony Pantano, Julia Sokol, Nicholas Reed Perkins
  • Publication number: 20240063398
    Abstract: According to one aspect, an additive for an iron negative electrode of an alkaline electrochemical cell may include a powder of discrete granules including agglomerated particles, the agglomerated particles including at least one metal sulfide.
    Type: Application
    Filed: August 17, 2023
    Publication date: February 22, 2024
    Inventors: David HOOKE, Michael Andrew GIBSON, Annelise Christine THOMPSON, Joseph Anthony PANTANO, Marc Louis SYVERTSEN
  • Publication number: 20230399710
    Abstract: Various embodiments include processes for purifying and/or preparing iron-bearing materials. Various embodiments include purification and/or preparation of iron ores, iron, and their intermediates. Various embodiments include processes for purifying iron-bearing materials comprising leaching one or more soluble species of impurities out of iron-bearing materials using a leaching solution comprising fluorine.
    Type: Application
    Filed: February 6, 2023
    Publication date: December 14, 2023
    Inventors: Michael Andrew GIBSON, Danielle Cassidy SMITH, Yet-Ming CHIANG, Kjell William SCHRODER, Olivia Claire TAYLOR, Vincent Chevrier
  • Patent number: 11826949
    Abstract: Systems, methods, components, and materials are disclosed for stereolithographic fabrication of three-dimensional, dense objects. A resin including at least one component of a binder system and dispersed particles can be exposed to an activation light source. The activation light source can cure the at least one component of the binder system to form a green object, which can include the at least one component of the binder system and the particles. A dense object can be formed from the green object by removing the at least one component of the binder system in an extraction process and thermally processing particles to coalesce into the dense object.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: November 28, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Michael J. Tarkanian, Yet-Ming Chiang, Jay Tobia, Olivia Molnar Lam
  • Publication number: 20230290936
    Abstract: Systems, methods, and devices of various aspects include using tin, antimony, and/or indium as an additive to an electrolyte and/or electrode in an electrochemical system, such as a battery, having an iron-based anode. In some aspects, the addition of tin, antimony, and/or indium may improve cycling of the iron-based anode. Systems, methods, and devices of various aspects include using high hydroxide concentration electrolyte in an electrochemical system, such as a battery. In some aspects, a high hydroxide concentration electrolyte may increase the stored amount of charge stored in the cell (i.e., the capacity of the battery material) and/or decrease the overpotential (i.e., increase the voltage) of the battery.
    Type: Application
    Filed: October 27, 2022
    Publication date: September 14, 2023
    Inventors: Annelise Christine THOMPSON, Michael Andrew GIBSON, William Henry WOODFORD, Rebecca Marie EISENACH, Jocelyn Marie NEWHOUSE, Nicholas Reed PERKINS, Olivia Claire TAYLOR, Kjell William SCHRODER, Karen THOMAS-ALYEA, Zachariah NORMAN, Johanna GOODMAN, Jonathan Thomas VARDNER, Benjamin Thomas HULTMAN, Sydney GARY, Natalie MAKO, Renee MITCHELL, Brooke WOJESKI, Jarrod David MILSHTEIN
  • Patent number: 11702367
    Abstract: Devices, systems, and methods are directed to binder jetting for forming three-dimensional parts having controlled, macroscopically inhomogeneous material composition. In general, a binder may be delivered to each layer of a plurality of layers of a powder of inorganic particles. An active component may be introduced, in a spatially controlled distribution, to at least one of the plurality of layers such that the binder, the powder of inorganic particles, and the active component, in combination, form an object. The object may be thermally processed into a three-dimensional part having a gradient of one or more physicochemical properties of a material at least partially formed from thermally processing the inorganic particles and the active component of the object.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: July 18, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Alexander Barbati, Michael Andrew Gibson, Nihan Tuncer, Brian Kernan
  • Patent number: 11626924
    Abstract: Satellites may be integrated into a provider network for cloud-based services by utilizing a satellite-deployable computing device to execute one or more cloud services that are accessible by client devices of the provider network via respective associated Application Programming Interfaces (APIs). In some embodiments, the satellite-deployable computing device may process payload data of the satellite in accordance with one or more cloud-based services indicated in control instructions originating from a client device of the provider network. In some embodiments, the processed data may be transmitted to a ground station in accordance with one or more cloud-based services.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: April 11, 2023
    Assignee: Amazon Technologies, Inc.
    Inventors: Prabu Ramachandran, Richard M. Weatherly, Nathan Burns, Michael Andrew Gibson
  • Patent number: 11597011
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: March 7, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 11597153
    Abstract: Embodiments of the present disclosure are drawn to systems and methods for adjusting a three-dimensional (3D) model used in metal additive manufacturing to maintain dimensional accuracy and repeatability of a fabricated 3D part. These embodiments may be used to reduce or remove geometric distortions in the fabricated 3D part. One exemplary method may include: receiving, via one or more processors, a selection made by a user; receiving a 3D model of a desired part; retrieving at least one model constant based on the user's selection; receiving an input of at least one process variable setting from a set of process variable settings; generating transformation factors based on the at least one process variable parameter and the at least one model constant; transforming the 3D model of the desired part based on the transformation factors; and generating processing instructions for fabricating the transformed 3D model of the desired part.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: March 7, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Alexander C. Barbati, Michael Andrew Gibson, George Hudelson, Nicholas Mark Mykulowycz, Brian D. Kernan, Nihan Tuncer
  • Publication number: 20220367911
    Abstract: Systems, methods, and devices of various aspects include using tin and/or antimony as an additive to an electrolyte and/or electrode in an electrochemical system, such as a battery, having an iron-based anode. In some aspects, the addition of tin and/or antimony may improve cycling of the iron-based anode. Systems, methods, and devices of various aspects include using high hydroxide concentration electrolyte in an electrochemical system, such as a battery. In some aspects, a high hydroxide concentration electrolyte may increase the stored amount of charge stored in the cell (i.e., the capacity of the battery material) and/or decrease the overpotential (i.e., increase the voltage) of the battery.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 17, 2022
    Inventors: Annelise Christine THOMPSON, Michael Andrew GIBSON, William Henry WOODFORD, Rebecca Marie EISENACH, Jocelyn Marie NEWHOUSE, Nicholas Reed PERKINS, Olivia Claire TAYLOR, Kjell William SCHRODER, Karen THOMAS-ALYEA
  • Publication number: 20220149359
    Abstract: Iron electrode materials, iron electrodes, and methods for fabricating said iron electrode materials and iron electrodes via elevated temperature thermomechanical processing of porous particulate iron materials are described. For example, as part of iron electrode manufacture, a particulate iron material into an apparatus may be provided. In addition, pressure and/or heat may be applied to the particulate iron material in the apparatus for a time period to form an electrode having therein conductive connections between particles of the particulate iron material.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 12, 2022
    Inventors: Michael Andrew GIBSON, Joseph Anthony PANTANO, Rupak CHAKRABORTY, Nicholas Reed PERKINS, William Henry WOODFORD, Valerie Christine SACHA, Robert Wesley MORGAN, Eric WEBER, Vincent CHEVRIER, Andrew Haynes LIOTTA, Karen THOMAS-ALYEA, Leah NATION, Michael CHON, Rebecca Marie EISENACH
  • Publication number: 20220065533
    Abstract: The present disclosure includes a furnace for heating and/or sintering one or more three-dimensional printed metal parts. The furnace includes a furnace chamber, insulation within the furnace chamber, a retort within the furnace chamber, and one or more getters containing getter material. The retort is configured to receive the one or more three-dimensional printed metal parts.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 3, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Nathan Woodard, Shashank Holenarasipura Raghu, Michael Andrew Gibson
  • Publication number: 20210359291
    Abstract: Materials, designs, and methods of fabrication for electrodes for electrochemical cells are disclosed. In various embodiments, the electrode comprises iron. Various embodiments may include materials, systems, and methods for the use of various iron-bearing materials, starting from the discharged or partially discharged state in an alkaline electrochemical cell, such as an Fe—Ni, Fe—MnO2, or Fe-air battery. Various embodiments may include a battery comprising an electrode comprising iron. In various embodiments, the iron may be in various forms, such as iron ore, iron concentrate, iron pellets, BF grade pellets, DR grade pellets, hematite, magnetite, wustite, martite, goethite, limonite, siderite, pyrite, ilmenite, spinel manganese ferrite, etc. In various embodiments, the iron may include impurity phases, such as SiO2, CaO, etc.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 18, 2021
    Inventors: Michael Andrew GIBSON, Yet-Ming CHIANG, William Henry WOODFORD
  • Publication number: 20210351450
    Abstract: Various embodiments relate to several processes that may recover commodity chemicals from an alkaline metal-air battery. In various embodiments, while the cell is operating, various side products and waste streams may be collected and processed to regain use or additional value. Various embodiments also include processes to be performed after the cell has been disassembled, and each of its electrodes have been separated such as not to be an electrical hazard. The alkaline metal battery recycling processes described herein may provide multiple forms of commodity iron, high purity transition metal ores, fluoropolymer dispersions, various carbons, commodity chemicals, and catalyst dispersions.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 11, 2021
    Inventors: Nicholas Reed Perkins, Isabella Caruso, Rachel Elizabeth Mumma, Anthony Tran, Rupak Chakraborty, Matthew Edward Via, Jocelyn Marie Newhouse, Jarrod David Milshtein, Liang Su, Michael Andrew Gibson, Danielle Cassidy Smith, William Henry Woodford, Amelie Nina Kharey
  • Publication number: 20210336245
    Abstract: Systems and methods of the various embodiments may provide porous materials for electrodes of electrochemical energy storage systems.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 28, 2021
    Inventors: Michael Andrew GIBSON, Annelise Christine THOMPSON, William Henry WOODFORD, Yet-Ming CHIANG
  • Publication number: 20210331242
    Abstract: Devices, systems, and methods are directed to binder jetting for forming three-dimensional parts having controlled, macroscopically inhomogeneous material composition. In general, a binder may be delivered to each layer of a plurality of layers of a powder of inorganic particles. An active component may be introduced, in a spatially controlled distribution, to at least one of the plurality of layers such that the binder, the powder of inorganic particles, and the active component, in combination, form an object. The object may be thermally processed into a three-dimensional part having a gradient of one or more physicochemical properties of a material at least partially formed from thermally processing the inorganic particles and the active component of the object.
    Type: Application
    Filed: October 17, 2018
    Publication date: October 28, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander Barbati, Michael Andrew Gibson, Nihan Tuncer, Brian Kernan
  • Publication number: 20210291274
    Abstract: A method for fabricating an infiltrated object of a desired shape having a high volume fraction of infiltrant using an additively manufactured preform. Using an additive manufacturing technique, the preform is formed with graded macro-porosity. When infiltrated, the void volume of the macro-porosity is filled with infiltrant Optionally, the void volume may be varied across the profile of the object to create a gradient of mechanical properties in the infiltrated object.
    Type: Application
    Filed: July 15, 2019
    Publication date: September 23, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Timothy Sercombe, Michael Andrew Gibson, Ellen Elizabeth Benn
  • Publication number: 20210283688
    Abstract: Techniques and compositions are disclosed for three-dimensional printing with powder/binder systems including, but not limited to, metal injection molding powder materials, highly-filled polymer composites, and any other materials suitable for handling with various additive manufacturing techniques, and further suitable for subsequent debinding and thermal processing into a final object.
    Type: Application
    Filed: December 14, 2017
    Publication date: September 16, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Ricardo Fulop, Animesh Bose, Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg
  • Publication number: 20210276083
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving strength fabrication of three-dimensional objects formed through layer-by-layer process in which an ink is delivery of a binder delivered onto successive layers of a powder of inorganic particles in a powder bed. More specifically, nanoparticles of inorganic material can may be introduced into one or more layers of the metal powder in the powder bed and thermally processed to facilitate sinter necking, in the powder bed, of the metal particles forming the three-dimensional object. Such sinter necking in the powder bed can may improve strength of the three-dimensional objects being fabricated and, also or instead, can may reduce the likelihood of defects associated with subsequent processing of the three-dimensional objects (e.g., slumping and shrinking in a final sintering stage and/or inadequate densification of the final part).
    Type: Application
    Filed: February 21, 2018
    Publication date: September 9, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander C. Barbati, Richard Remo Fontana, Michael Andrew Gibson, George Hudelson