Patents by Inventor Michael Andrew Gibson

Michael Andrew Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170297100
    Abstract: Binder jetting techniques can be used to deposit and bind metallic particles or the like in a net shape for debinding and sintering into a final part. Where support structures are required to mitigate deformation of the object during the debinding and/or sintering, an interface layer may be formed between the support structures and portions of the object in order to avoid bonding of the support structure to the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Emanuel Michael Sachs, Ricardo Fulop, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297108
    Abstract: A powder bed is filled layer by layer with a powdered build material containing an activatable binder. The binder in each new layer is locally activated according to a computerized three-dimensional model of an object to fabricate, layer by layer, a sinterable net shape of the object within the powder bed. The sinterable net shape can then be removed, debound as appropriate, and sintered into a final part.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg, Ricardo Fulop, Emanuel Michael Sachs
  • Publication number: 20170297098
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297109
    Abstract: A powder bed is filled layer by layer with a sinterable powder and a liquid binder. After the liquid binder is applied, the liquid binder can be activated, e.g., by selectively curing cross-sections of the binder according to a computerized three-dimensional model of an object. In this manner, a sinterable net shape object can be formed within the powder bed layer by layer. The sinterable net shape can then be removed, debound as appropriate, and sintered into a final part.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg, Ricardo Fulop, Emanuel Michael Sachs
  • Publication number: 20170297099
    Abstract: A three-dimensional printer uses a fused filament fabrication process to fabricate a net shape object from build materials that can be debound and sintered into a final part. In order to facilitate separation of the object from surrounding support structures, the three-dimensional printer is configured to deposit material between adjacent surfaces of the object and the support that inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297106
    Abstract: Binder jetting techniques can be used to deposit and bind metallic particles or the like in a net shape for debinding and sintering into a final part. Where support structures are required to mitigate deformation of the object during the debinding and/or sintering, an interface layer may be formed between the support structures and portions of the object in order to avoid bonding of the support structure to the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Emanuel Michael Sachs, Ricardo Fulop, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297102
    Abstract: Additive fabrication systems generally use support structures to expand the available range of features and geometries in fabricated objects. For example, when a vertical shelf or cantilever extends from an object, a supplemental support structure may be required to provide a surface that this feature can be fabricated upon. This process may become more difficult when a surface requiring support is enclosed within a cavity inside an object being fabricated. Techniques are disclosed herein for fabricating supports that can be removed from within cavities in an object.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Ricardo Chin, Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297103
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. Disclosed herein are interface layers suitable for manufacture with an additive manufacturing system that resist the formation of bonds between a support structure and an object during subsequent sintering processes.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170252819
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A build plate that receives the object during fabrication includes a coating of material with a low melt temperature, such as a low melt temperature solder. In particular, the material may be an alloy that can be solidified while receiving the object, and then heated into a liquid state to facilitate removal of the object after fabrication is complete at a temperature sufficiently low that the adjacent, fabricated object does not melt or deform.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Richard Remo Fontana, Nicholas Mykulowycz
  • Publication number: 20170252817
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A nozzle cleaning fixture may be provided for the printer that is shaped to physically dislodge solidified build material and other contaminants from the nozzle. A robotic system for the printer can be used to maneuver the nozzle into engagement with the nozzle cleaning fixture for periodic cleaning, or in response to a diagnostic condition or the like indicating a clogged nozzle.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Nicholas Mykulowycz, Ricardo Fulop, Jonah Samuel Myerberg, Richard Thomas Burnham, Andrew F. Roberts, Richard Remo Fontana, Anastasios John Hart, Joseph Yosup Shim, Michael Andrew Gibson, Jan Schroers, Christopher Allan Schuh, Matthew David Verminski, Yet-Ming Chiang, Emanuel Michael Sachs
  • Publication number: 20170252825
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Porosity of one or more predetermined portions of objects fabricated from an accumulation of liquid metal droplets ejected using magnetohydrodynamic force can be controlled to form interfaces between support structures and parts within the object. Higher porosity along the interfaces, as compared to porosity along the support structures and the parts, can be useful for facilitating separation of the parts from the support structures.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Richard Remo Fontana, Michael Andrew Gibson
  • Publication number: 20170252820
    Abstract: A control loop for extrusion of a metallic build material such as bulk metallic glass measures a force required to extrude the build material, and uses this sensed parameter to estimate a temperature of the build material. The temperature, or a difference between the estimated temperature and a target temperature, can be used to speed or slow extrusion of the build material to control heat transfer from a heating system along the feedpath. This general control loop may be modified to account for other possible conditions such as nozzle clogging or the onset of crystallization.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Jonah Samuel Myerberg, Richard Remo Fontana, Michael Andrew Gibson, Ricardo Fulop, Anastasios John Hart, Nicholas Mykulowycz, Joseph Yosup Shim, Jan Schroers, Christopher Allan Schuh, Emanuel Michael Sachs, Peter Alfons Schmitt, Yet-Ming Chiang
  • Publication number: 20170252818
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A thermally compatible support structure may be formed to support regions of the object using a dissolvable bulk metallic glass.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg, Ricardo Fulop, Jan Schroers, Christopher Allan Schuh, Yet-Ming Chiang
  • Publication number: 20170252813
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a build material. One or more energy directors such as ridges are formed in an exposed surface of the deposited build material to provide regions of high, localized contact force that can improve interlayer bonding between successive layers of the build material. An ultrasonic vibrator can also usefully be incorporated into the printer to apply additional energy along these energy directors during deposition of a subsequent layer.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Jonah Samuel Myerberg, Richard Remo Fontana, Jan Schroers, Ricardo Fulop, Anastasios John Hart, Nicholas Mark Mykulowycz, Joseph Yosup Shim, Michael Andrew Gibson, Christopher Allan Schuh, Matthew David Verminski, Yet-Ming Chiang, Emanuel Michael Sachs
  • Publication number: 20170252851
    Abstract: A class of metallic composites is described with advantageous bulk properties for additive fabrication. In particular, the composites described herein can be used in fused filament fabrication or any other extrusion or deposition-based three-dimensional printing process.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 7, 2017
    Inventors: Ric Fulop, Michael Andrew Gibson, Emanuel Michael Sachs, Jonah Samuel Myerberg
  • Publication number: 20170252812
    Abstract: A printer fabricates an object from a build material based on a computerized model and a fused filament fabrication process. A nozzle for depositing the build material has an interior diameter approaching an outer diameter of build material fed to the nozzle in order to reduce extrusion and resistance forces imposed by the nozzle during deposition, while adequately constraining a planar position of the build material for accurate material deposition in a computer-controlled fabrication process.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Nicholas Mark Mykulowycz, Anastasios John Hart, Ricardo Fulop, Richard Remo Fontana, Jonah Samuel Myerberg, Joseph Yosup Shim, Michael Andrew Gibson, Jan Schroers, Christopher Allan Schuh, Matthew David Verminski, Yet-Ming Chiang, Emanuel Michael Sachs
  • Publication number: 20170252814
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A plasma depassivation wash is applied during deposition to remove oxidation and improve interlayer bonding between successive layers of the metallic build material. Other techniques such as ultrasonic vibration, formation of energy directors, joule heating, and the like, may be used in combination to form a mechanically robust bond between layers.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Jonah Samuel Myerberg, Yet-Ming Chiang, Christopher Allan Schuh, Anastasios John Hart, Ricardo Fulop, Richard Remo Fontana, Nicholas Mark Mykulowycz, Joseph Yosup Shim, Michael Andrew Gibson, Jan Schroers, Emanuel Michael Sachs
  • Publication number: 20170252815
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. The Seebeck effect can be employed to monitor a temperature difference between a build material and a nozzle that is extruding the build material based on voltage. The temperature difference can, in turn, be used to control operation of the printer or to determine an absolute temperature based on direct measurement of a temperature of the nozzle.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Richard Remo Fontana, Joseph Yosup Shim, Michael Andrew Gibson, Ricardo Fulop, Anastasios John Hart, Nicholas Mark Mykulowycz, Jonah Samuel Myerberg, Jan Schroers, Christopher Allan Schuh, Yet-Ming Chiang, Emanuel Michael Sachs
  • Patent number: 9744592
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: August 29, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170182560
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass build material. By heating the bulk metallic glass at an elevated temperature in between an object and adjacent support structures, an interface layer can be interposed between the object and support where the bulk metallic glass becomes crystallized to create a more brittle interface that facilitates removal of the support structure from the object after fabrication.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 29, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Michael Andrew Gibson