Patents by Inventor Michael Andrew Gibson

Michael Andrew Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180071825
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, a printer is configured to further fabricate an interface layer between the object and the support structure in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 15, 2018
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180050390
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, a printer is configured to further fabricate an interface layer between the object and the support structure in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: November 3, 2017
    Publication date: February 22, 2018
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 9833839
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 5, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170333994
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 23, 2017
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 9815118
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 14, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297109
    Abstract: A powder bed is filled layer by layer with a sinterable powder and a liquid binder. After the liquid binder is applied, the liquid binder can be activated, e.g., by selectively curing cross-sections of the binder according to a computerized three-dimensional model of an object. In this manner, a sinterable net shape object can be formed within the powder bed layer by layer. The sinterable net shape can then be removed, debound as appropriate, and sintered into a final part.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg, Ricardo Fulop, Emanuel Michael Sachs
  • Publication number: 20170297099
    Abstract: A three-dimensional printer uses a fused filament fabrication process to fabricate a net shape object from build materials that can be debound and sintered into a final part. In order to facilitate separation of the object from surrounding support structures, the three-dimensional printer is configured to deposit material between adjacent surfaces of the object and the support that inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297106
    Abstract: Binder jetting techniques can be used to deposit and bind metallic particles or the like in a net shape for debinding and sintering into a final part. Where support structures are required to mitigate deformation of the object during the debinding and/or sintering, an interface layer may be formed between the support structures and portions of the object in order to avoid bonding of the support structure to the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Emanuel Michael Sachs, Ricardo Fulop, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297102
    Abstract: Additive fabrication systems generally use support structures to expand the available range of features and geometries in fabricated objects. For example, when a vertical shelf or cantilever extends from an object, a supplemental support structure may be required to provide a surface that this feature can be fabricated upon. This process may become more difficult when a surface requiring support is enclosed within a cavity inside an object being fabricated. Techniques are disclosed herein for fabricating supports that can be removed from within cavities in an object.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Ricardo Chin, Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297104
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. The support structure may be a multi-part support structure to mitigate mold lock or facilitate removal from enclosed spaces.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297103
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. Disclosed herein are interface layers suitable for manufacture with an additive manufacturing system that resist the formation of bonds between a support structure and an object during subsequent sintering processes.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297111
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart, Jay Collin Tobia, Nihan Tuncer, Brian Daniel Kernan, Tomek Andrzej Brzezinski
  • Publication number: 20170297097
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297098
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297100
    Abstract: Binder jetting techniques can be used to deposit and bind metallic particles or the like in a net shape for debinding and sintering into a final part. Where support structures are required to mitigate deformation of the object during the debinding and/or sintering, an interface layer may be formed between the support structures and portions of the object in order to avoid bonding of the support structure to the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Emanuel Michael Sachs, Ricardo Fulop, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297108
    Abstract: A powder bed is filled layer by layer with a powdered build material containing an activatable binder. The binder in each new layer is locally activated according to a computerized three-dimensional model of an object to fabricate, layer by layer, a sinterable net shape of the object within the powder bed. The sinterable net shape can then be removed, debound as appropriate, and sintered into a final part.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg, Ricardo Fulop, Emanuel Michael Sachs
  • Publication number: 20170252817
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A nozzle cleaning fixture may be provided for the printer that is shaped to physically dislodge solidified build material and other contaminants from the nozzle. A robotic system for the printer can be used to maneuver the nozzle into engagement with the nozzle cleaning fixture for periodic cleaning, or in response to a diagnostic condition or the like indicating a clogged nozzle.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Nicholas Mykulowycz, Ricardo Fulop, Jonah Samuel Myerberg, Richard Thomas Burnham, Andrew F. Roberts, Richard Remo Fontana, Anastasios John Hart, Joseph Yosup Shim, Michael Andrew Gibson, Jan Schroers, Christopher Allan Schuh, Matthew David Verminski, Yet-Ming Chiang, Emanuel Michael Sachs
  • Publication number: 20170252815
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. The Seebeck effect can be employed to monitor a temperature difference between a build material and a nozzle that is extruding the build material based on voltage. The temperature difference can, in turn, be used to control operation of the printer or to determine an absolute temperature based on direct measurement of a temperature of the nozzle.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Richard Remo Fontana, Joseph Yosup Shim, Michael Andrew Gibson, Ricardo Fulop, Anastasios John Hart, Nicholas Mark Mykulowycz, Jonah Samuel Myerberg, Jan Schroers, Christopher Allan Schuh, Yet-Ming Chiang, Emanuel Michael Sachs
  • Publication number: 20170252813
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a build material. One or more energy directors such as ridges are formed in an exposed surface of the deposited build material to provide regions of high, localized contact force that can improve interlayer bonding between successive layers of the build material. An ultrasonic vibrator can also usefully be incorporated into the printer to apply additional energy along these energy directors during deposition of a subsequent layer.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Jonah Samuel Myerberg, Richard Remo Fontana, Jan Schroers, Ricardo Fulop, Anastasios John Hart, Nicholas Mark Mykulowycz, Joseph Yosup Shim, Michael Andrew Gibson, Christopher Allan Schuh, Matthew David Verminski, Yet-Ming Chiang, Emanuel Michael Sachs
  • Publication number: 20170252825
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Porosity of one or more predetermined portions of objects fabricated from an accumulation of liquid metal droplets ejected using magnetohydrodynamic force can be controlled to form interfaces between support structures and parts within the object. Higher porosity along the interfaces, as compared to porosity along the support structures and the parts, can be useful for facilitating separation of the parts from the support structures.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Richard Remo Fontana, Michael Andrew Gibson