Patents by Inventor Michael B. Ball

Michael B. Ball has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6371840
    Abstract: A method and apparatus are provided for handling planar structures, such as semiconductor wafers, with reduced breakage and cracking. The method includes the step of segmenting a wafer prior to grinding. The apparatus includes a segmented vacuum table for supporting wafer portions in position to be ground to a desired thickness. In another aspect of the invention, adhesive material is employed to individually secure wafer portions in position during the grinding process.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: April 16, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Michael B. Ball, Steve W. Heppler
  • Publication number: 20020040921
    Abstract: A wire-bonding machine includes a heat block for supporting a lead frame during wire-bonding. A clamp mechanism in the machine clamps leads of the lead frame during wire-bonding by fixedly holding sets of the leads against the heat block one set at a time. A wire-bonding tool wire-bonds leads clamped by the clamp mechanism to bond pads on an integrated circuit die. By clamping leads of the lead frame in separate sets, the machine provides improved clamping for lead frames with leads requiring clamping in different planes.
    Type: Application
    Filed: December 10, 2001
    Publication date: April 11, 2002
    Inventors: Michael B. Ball, Rich Fogal
  • Publication number: 20020041026
    Abstract: A semiconductor device, such as an integrated circuit die, includes a plurality of bond pads on an active surface thereof electrically connected to internal circuitry of the semiconductor device, and a plurality of jumper pads on the active surface which are electrically isolated from internal circuitry of the die. The jumper pads effectively provide stepping stones for wire bonds to be made across the active surface between bond pads. The jumper pads may be formed directly on the semiconductor device or on a non-conductive support structure that is attached to the semiconductor device.
    Type: Application
    Filed: November 1, 2001
    Publication date: April 11, 2002
    Inventor: Michael B. Ball
  • Patent number: 6363968
    Abstract: A method of conserving a facility delivered to a machine during the machine's idle mode is herein described. In one embodiment, the method is directed to a method for conserving coolant water delivery to a semiconductor wafer grinding machine. The system monitors the status of the grinder to determine whether the grinder is active or idle. After the system determines the grinder has entered idle mode, the system reduces the flow of water to the machine. In one embodiment, the flow is simply reduced while, in another embodiment, the flow is terminated. A delay circuit in the system may delay the reduction of the flow rate until some point after entering idle mode. Periodically throughout the idle mode, the system increases the flow of coolant water to the grinder to ensure the temperature of all grinder components remains consistent. The duty cycle of the coolant flow may be adjusted to optimize water conservation and machine readiness.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: April 2, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Michael B. Ball
  • Publication number: 20020030088
    Abstract: A wire-bonding machine includes a heat block for supporting a lead frame during wire-bonding. A clamp mechanism in the machine clamps leads of the lead frame during wire-bonding by fixedly holding sets of the leads against the heat block one set at a time. A wire-bonding tool wire-bonds leads clamped by the clamp mechanism to bond pads on an integrated circuit die. By clamping leads of the lead frame in separate sets, the machine provides improved clamping for lead frames with leads requiring clamping in different planes.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 14, 2002
    Inventors: Michael B. Ball, Rich Fogal
  • Publication number: 20020031864
    Abstract: A method for increasing integrated circuit density comprising stacking an upper wafer and a lower wafer, each of which have fabricated circuitry in specific areas on their respective face surfaces. The upper wafer is attached back-to-back with the lower wafer with a layer of adhesive applied over the back side of the lower wafer. The wafers are aligned so as to bring complimentary circuitry on each of the wafers into perpendicular alignment. The adhered wafer pair is then itself attached to an adhesive film to immobilize the wafer during dicing. The adhered wafer pair may be diced into individual die pairs or wafer portions containing more than one die pair.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 14, 2002
    Inventor: Michael B. Ball
  • Publication number: 20020023944
    Abstract: An apparatus and method of forming improved wire bonds between the contact pads on semiconductor devices and individual lead frame fingers of a lead frame. The present invention includes the use of an individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding. If desired, the present invention also provides for the use of a conventional fixed clamp for the lead fingers during the wire bonding process in addition to the individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding. The present invention also contemplates the replacement of the fixed clamp with another, or second, independent clamp in addition to the first individual independent lead finger clamp during the wire bonding process.
    Type: Application
    Filed: August 28, 2001
    Publication date: February 28, 2002
    Inventors: Michael B. Ball, Rich Fogal
  • Publication number: 20020023940
    Abstract: An apparatus and method of forming improved wire bonds between the contact pads on semiconductor devices and individual lead frame fingers of a lead frame. The present invention includes the use of an individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding. If desired, the present invention also provides for the use of a conventional fixed clamp for the lead fingers during the wire bonding process in addition to the individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding. The present invention also contemplates the replacement of the fixed clamp with another, or second, independent clamp in addition to the first individual independent lead finger clamp during the wire bonding process.
    Type: Application
    Filed: September 18, 2001
    Publication date: February 28, 2002
    Inventors: Michael B. Ball, Rich Fogal
  • Patent number: 6351022
    Abstract: A method and apparatus are provided for handling planar structures, such as semiconductor wafers, with reduced breakage and cracking. The method includes the step of segmenting a wafer prior to grinding. The apparatus includes a segmented vacuum table for supporting wafer portions in position to be ground to a desired thickness. In another aspect of the invention, adhesive material is employed to individually secure wafer portions in position during the grinding process.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: February 26, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Michael B. Ball, Steve W. Heppler
  • Patent number: 6337227
    Abstract: A method for increasing integrated circuit density comprising stacking an upper wafer and a lower wafer, each of which have fabricated circuitry in specific areas on their respective face surfaces. The upper wafer is attached back-to-back with the lower wafer with a layer of adhesive applied over the back side of the lower wafer. The wafers are aligned so as to bring complimentary circuitry on each of the wafers into perpendicular alignment. The adhered wafer pair is then itself attached to an adhesive film to immobilize the wafer during dicing. The adhered wafer pair may be diced into individual die pairs or wafer portions containing more than one die pair. At least one face side of the die pair (attachment side) may have an array of minute solder balls or small pins disposed thereon for attachment and electrical communication of the die to at least one substrate such as a printed circuit board or leadframe.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: January 8, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Michael B. Ball
  • Patent number: 6334566
    Abstract: A wire-bonding machine includes a heat block for supporting a lead frame during wire-bonding. A clamp mechanism in the machine clamps leads of the lead frame during wire-bonding by fixedly holding sets of the leads against the heat block one set at a time. A wire-bonding tool wire-bonds leads clamped by the clamp mechanism to bond pads on an integrated circuit die. By clamping leads of the lead frame in separate sets, the machine provides improved clamping for lead frames with leads requiring clamping in different planes.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: January 1, 2002
    Assignee: Micron Technology
    Inventors: Michael B. Ball, Rich Fogal
  • Patent number: 6325275
    Abstract: An apparatus and method of forming improved wire bonds between the contact pads on semiconductor devices and individual lead frame fingers of a lead frame. The present invention includes the use of an individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding. If desired, the present invention also provides for the use of a conventional fixed clamp for the lead fingers during the wire bonding process in addition to the individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding. The present invention also contemplates the replacement of the fixed clamp with another, or second, independent clamp in addition to the first individual independent lead finger clamp during the wire bonding process.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: December 4, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Michael B. Ball, Rich Fogal
  • Patent number: 6321970
    Abstract: An extended travel wire bonding machine that includes a first positioning table movable along an X axis in a first horizontal plane, a second positioning table movable along X and Y axes in a second horizontal plane, the second positioning table being supported on the first positioning table, and a bond head supported on the second positioning table. The wire bonding machine may also include a bonding tool attached to the bond head and a carrier for supporting the leadframe strip under the bonding tool. The first positioning table is moveable for substantially the entire length of the leadframe strip to allow the bonding tool to be successively moved over each semiconductor die on the leadframe strip.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: November 27, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Rich Fogal, Michael B. Ball
  • Publication number: 20010041500
    Abstract: A method of conserving a facility delivered to a machine during the machine's idle mode is herein described. In one embodiment, the method is directed to a method for conserving coolant water delivery to a semiconductor wafer grinding machine. The system monitors the status of the grinder to determine whether the grinder is active or idle. After the system determines the grinder has entered idle mode, the system reduces the flow of water to the machine. In one embodiment, the flow is simply reduced while, in another embodiment, the flow is terminated. A delay circuit in the system may delay the reduction of the flow rate until some point after entering idle mode. Periodically throughout the idle mode, the system increases the flow of coolant water to the grinder to ensure the temperature of all grinder components remains consistent. The duty cycle of the coolant flow may be adjusted to optimize water conservation and machine readiness.
    Type: Application
    Filed: June 4, 2001
    Publication date: November 15, 2001
    Applicant: Micron Technology, Inc.
    Inventor: Michael B. Ball
  • Publication number: 20010041437
    Abstract: Apparatus and methods for placing conductive spheres on prefluxed bond pads of a substrate using a stencil plate with a pattern of through-holes positioned over the bond pads. Conductive spheres are placed in the through-holes by a moving feed mechanism and the spheres drop through the through-holes onto the bond pads. In one embodiment, the feed mechanism is a sphere hopper which crosses the entire through-hole pattern. In another embodiment, a shuttle plate fed spheres from a reservoir and reversibly moves about one-half of the pitch, moving from a non-discharge position to a discharge position.
    Type: Application
    Filed: June 29, 2001
    Publication date: November 15, 2001
    Inventors: Chad A. Cobbley, Michael B. Ball, Marjorie L. Waddel
  • Patent number: 6305593
    Abstract: An apparatus and method of forming improved wire bonds between the contact pads on semiconductor devices and individual lead frame fingers of a lead frame. The apparatus and method includes the use of a penetrating individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding by the clamp penetrating a portion of the lead finger being bonded. If desired, the apparatus and method also provides for the use of either a penetrating or non-penetrating fixed clamp for the lead fingers during the wire bonding process in addition to the penetrating individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: October 23, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Michael B. Ball
  • Publication number: 20010027989
    Abstract: An apparatus and method of supporting lead fingers during a wire bonding process and of preventing the bonding apparatus and clamping assembly from applying force against the die. The present invention includes the use of a movable arm with a portion that is positionable under a portion of the lead fingers of a lead frame during the wire bonding process to provide increased stability of the lead fingers and prevent the bonding apparatus and clamping assembly from applying force against the die. The present invention also provides for the transfer of heat from the heat block directly to the lead fingers during the wire bonding process. The present invention includes the use of a clamp for stabilizing lead fingers during the wire bonding process.
    Type: Application
    Filed: June 8, 2001
    Publication date: October 11, 2001
    Inventor: Michael B. Ball
  • Publication number: 20010027988
    Abstract: An apparatus and method of forming improved wire bonds between the contact pads on semiconductor devices and individual lead frame fingers of a lead frame. The apparatus and method includes the use of a penetrating individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding by the clamp penetrating a portion of the lead finger being bonded. If desired, the apparatus and method also provides for the use of either a penetrating or non-penetrating fixed clamp for the lead fingers during the wire bonding process in addition to the penetrating individual independent lead finger clamp during the wire bonding process to provide increased stability of the individual lead finger for improved bonding.
    Type: Application
    Filed: June 7, 2001
    Publication date: October 11, 2001
    Inventor: Michael B. Ball
  • Patent number: 6299057
    Abstract: An apparatus and method of supporting lead fingers during a wire bonding process and of preventing the bonding apparatus and clamping assembly from applying force against the die are available. The present invention includes the use of a movable arm with a portion that is positionable under a portion of the lead fingers of a lead frame during the wire bonding process to provide increased stability of the lead fingers and prevent the bonding apparatus and clamping assembly from applying force against the die. The present invention also provides for the transfer of heat from the heat block directly to the lead fingers during the wire bonding process. The present invention includes the use of a clamp for stabilizing lead fingers during the wire bonding process.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: October 9, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Michael B. Ball
  • Patent number: 6299049
    Abstract: A wire-bonding machine includes a heat block for supporting a lead frame during wire-bonding. A clamp mechanism in the machine clamps leads of the lead frame during wire-bonding by fixedly holding sets of the leads against the heat block one set at a time. A wire-bonding tool wire-bonds leads clamped by the clamp mechanism to bond pads on an integrated circuit die. By clamping leads of the lead frame in separate sets, the machine provides improved clamping for lead frames with leads requiring clamping in different planes.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: October 9, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Michael B. Ball, Rich Fogal