Patents by Inventor Michael B. Binnard

Michael B. Binnard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11300884
    Abstract: A catoptric system having a reference axis and including a reflective pattern-source (carrying a substantially one-dimensional pattern) and a combination of two optical reflectors disposed sequentially to transfer EUV radiation incident onto the first optical component to the pattern-source the substantially one-dimensional pattern of which is disposed in a curved surface. In one case, such combination includes only two optical reflectors (each may contain multiple constituent components). The combination is disposed in a fixed spatial and optical relationship with respect to the pattern-source, and represents an illumination unit (IU) of a 1D EUV exposure tool that additionally includes a projection optical sub-system configured to form an optical image of the pattern-source on an image plane with the use of only two beams of radiation. These only two beams of radiation originate at the pattern-source from the EUV radiation transferred onto the pattern-source.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: April 12, 2022
    Assignee: Nikon Corporation
    Inventors: Daniel Gene Smith, David M. Williamson, Donis G. Flagello, Michael B. Binnard
  • Patent number: 11099483
    Abstract: Extreme ultra-violet (EUV) lithography ruling engine specifically configured to print one-dimensional lines on a target workpiece includes source of EUV radiation; a pattern-source defining 1D pattern; an illumination unit (IU) configured to irradiate the pattern-source; and projection optics (PO) configured to optically image, with a reduction factor N>1, the 1D pattern on image surface that is optically-conjugate to the 1D pattern. Irradiation of the pattern-source can be on-axis or off-axis. While 1D pattern has first spatial frequency, its optical image has second spatial frequency that is at least twice the first spatial frequency. The pattern-source can be flat or curved. The IU may include a relay reflector. A PO's reflector may include multiple spatially-distinct reflecting elements aggregately forming such reflector. The engine is configured to not allow formation of optical image of any 2D pattern that has spatial resolution substantially equal to a pitch of the 1D pattern of the pattern-source.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: August 24, 2021
    Assignee: Nikon Corporation
    Inventors: Donis G. Flagello, David M. Williamson, Stephen P. Renwick, Daniel Gene Smith, Michael B. Binnard
  • Patent number: 11075573
    Abstract: A method for moving a stage includes coupling a stage mover to the stage, and directing current to the stage mover with a control system. The stage mover includes a magnet array and a conductor array positioned adjacent to the magnet array. The conductor array includes a first layer of coils and a second layer of coils, with the first layer of coils being closer to the magnet array than the second layer of coils. The control system directs current to the first layer of coils and the second layer of coils independently. Further, the control system directs more current to the first layer of coils than the second layer of coils during a movement step to reduce the power consumption.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 27, 2021
    Assignee: Nikon Research Corporation of America
    Inventors: Neyram Hemati, Michael B. Binnard
  • Patent number: 11067900
    Abstract: An extreme ultraviolet lithography system (10) that creates a new pattern (330) having a plurality of densely packed parallel lines (332) on a workpiece (22), the system (10) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13B) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22) to create a first stripe (364) of generally parallel lines (332) during a first scan (365); and a control system (24). The workpiece (22) includes an existing pattern (233) that is distorted. The control system (24) selectively adjusts a control parameter during the first scan (365) so that the first stripe (364) is distorted to more accurately overlay the portion of existing pattern (233) positioned under the first stripe (364).
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: July 20, 2021
    Inventor: Michael B. Binnard
  • Patent number: 11061338
    Abstract: A position encoder for monitoring position of an object includes a target pattern, an illumination system, an image sensor, and a control system. The illumination system generates (i) a first illumination beam that is directed toward and impinges on the target pattern, the first illumination beam having a first beam characteristic; and (ii) a second illumination beam that is directed toward and impinges on the target pattern, the second illumination beam having a second beam characteristic that is different than the first beam characteristic. The image sensor is coupled to the object and is spaced apart from the target pattern. The image sensor senses a first set of information from the first illumination beam impinging on the target pattern and senses a second set of information from the second illumination beam impinging on the target pattern. The control system analyzes the first set of information and the second set of information to monitor the position of the object.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: July 13, 2021
    Inventors: Jonathan Kyle Wells, Paul Derek Coon, Matthew D. Rosa, Johnathan Marquez, Michael B. Binnard, Steven Douglas Slonaker, Daniel Gene Smith, Stephen P. Renwick, Brett Herr
  • Patent number: 10890849
    Abstract: Extreme ultra-violet (EUV) lithography ruling engine specifically configured to print one-dimensional lines on a target workpiece includes source of EUV radiation; a pattern-source defining 1D pattern; an illumination unit (IU) configured to irradiate the pattern-source; and projection optics (PO) configured to optically image, with a reduction factor N>1, the 1D pattern on image surface that is optically-conjugate to the 1D pattern. Irradiation of the pattern-source can be on-axis or off-axis. While 1D pattern has first spatial frequency, its optical image has second spatial frequency that is at least twice the first spatial frequency. The pattern-source can be flat or curved. The IU may include a relay reflector. A PO's reflector may include multiple spatially-distinct reflecting elements aggregately forming such reflector. The engine is configured to not allow formation of optical image of any 2D pattern that has spatial resolution substantially equal to a pitch of the 1D pattern of the pattern-source.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: January 12, 2021
    Assignee: Nikon Corporation
    Inventors: Donis G. Flagello, David M. Williamson, Stephen P. Renwick, Daniel Gene Smith, Michael B. Binnard
  • Publication number: 20200326633
    Abstract: An extreme ultraviolet lithography system (10) that creates a new pattern (330) having a plurality of densely packed parallel lines (332) on a workpiece (22), the system (10) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13B) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22) to create a first stripe (364) of generally parallel lines (332) during a first scan (365); and a control system (24). The workpiece (22) includes an existing pattern (233) that is distorted. The control system (24) selectively adjusts a control parameter during the first scan (365) so that the first stripe (364) is distorted to more accurately overlay the portion of existing pattern (233) positioned under the first stripe (364).
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventor: Michael B. Binnard
  • Patent number: 10747117
    Abstract: An extreme ultraviolet lithography system (10) that creates a pattern (230) having a plurality of densely packed parallel lines (232) on a workpiece (22) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13A) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22); and a pattern blind assembly (26) positioned in a beam path (55) of the extreme ultraviolet beam (13A). The pattern blind assembly (26) shapes the extreme ultraviolet beam (13A) so that an exposure field (28) on the workpiece (22) has a polygonal shape.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: August 18, 2020
    Assignee: NIKON CORPORATION
    Inventors: Michael B. Binnard, Daniel Gene Smith, David M. Williamson
  • Patent number: 10712671
    Abstract: An extreme ultraviolet lithography system (10) that creates a new pattern (330) having a plurality of densely packed parallel lines (332) on a workpiece (22), the system (10) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13B) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22) to create a first stripe (364) of generally parallel lines (332) during a first scan (365); and a control system (24). The workpiece (22) includes an existing pattern (233) that is distorted. The control system (24) selectively adjusts a control parameter during the first scan (365) so that the first stripe (364) is distorted to more accurately overlay the portion of existing pattern (233) positioned under the first stripe (364).
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: July 14, 2020
    Assignee: NIKON CORPORATION
    Inventor: Michael B. Binnard
  • Publication number: 20200073251
    Abstract: A catoptric system having a reference axis and including a reflective pattern-source (carrying a substantially one-dimensional pattern) and a combination of two optical reflectors disposed sequentially to transfer EUV radiation incident onto the first optical component to the pattern-source the substantially one-dimensional pattern of which is disposed in a curved surface. In one case, such combination includes only two optical reflectors (each may contain multiple constituent components). The combination is disposed in a fixed spatial and optical relationship with respect to the pattern-source, and represents an illumination unit (IU) of a 1D EUV exposure tool that additionally includes—includes a projection optical sub-system configured to form an optical image of the pattern-source on an image plane with the use of only two beams of radiation. These only two beams of radiation originate at the pattern-source from the EUV radiation transferred onto the pattern-source.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Applicant: Nikon Corporation
    Inventors: Daniel Gene Smith, David M. Williamson, Donis G. Flagello, Michael B. Binnard
  • Patent number: 10394138
    Abstract: An exposure apparatus (10) for transferring one or more features to a workpiece (22) includes an illumination source (44A); (ii) a chuck (40) that retains the workpiece (22); (iii) a chamber housing (28A) that encircles the chuck and the workpiece; and (iv) a temperature controller (32) (34) that adjusts the temperature of at least one of the chuck (40) and the workpiece (22) so that a predetermined temperature differential (309) exists between the chuck (40) and the workpiece (22) before transferring the features to the workpiece (22).
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: August 27, 2019
    Assignee: NIKON CORPORATION
    Inventors: Michael B. Binnard, Paul Derek Coon
  • Publication number: 20190235393
    Abstract: An extreme ultraviolet lithography system (10) that creates a pattern (230) having a plurality of densely packed parallel lines (232) on a workpiece (22) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13A) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22); and a pattern blind assembly (26) positioned in a beam path (55) of the extreme ultraviolet beam (13A). The pattern blind assembly (26) shapes the extreme ultraviolet beam (13A) so that an exposure field (28) on the workpiece (22) has a polygonal shape.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: Michael B. Binnard, Daniel Gene Smith, David M. Williamson
  • Publication number: 20190212663
    Abstract: An extreme ultraviolet lithography system (10) that creates a new pattern (330) having a plurality of densely packed parallel lines (332) on a workpiece (22), the system (10) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13B) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22) to create a first stripe (364) of generally parallel lines (332) during a first scan (365); and a control system (24). The workpiece (22) includes an existing pattern (233) that is distorted. The control system (24) selectively adjusts a control parameter during the first scan (365) so that the first stripe (364) is distorted to more accurately overlay the portion of existing pattern (233) positioned under the first stripe (364).
    Type: Application
    Filed: June 15, 2017
    Publication date: July 11, 2019
    Inventor: Michael B. Binnard
  • Patent number: 10295911
    Abstract: An extreme ultraviolet lithography system (10) that creates a pattern (230) having a plurality of densely packed parallel lines (232) on a workpiece (22) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13A) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22); and a pattern blind assembly (26) positioned in a beam path (55) of the extreme ultraviolet beam (13A). The pattern blind assembly (26) shapes the extreme ultraviolet beam (13A) so that an exposure field (28) on the workpiece (22) has a polygonal shape.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: May 21, 2019
    Assignee: NIKON CORPORATION
    Inventors: Michael B. Binnard, Daniel Gene Smith, David M. Williamson
  • Publication number: 20190020257
    Abstract: A method for moving a stage includes coupling a stage mover to the stage, and directing current to the stage mover with a control system. The stage mover includes a magnet array and a conductor array positioned adjacent to the magnet array. The conductor array includes a first layer of coils and a second layer of coils, with the first layer of coils being closer to the magnet array than the second layer of coils. The control system directs current to the first layer of coils and the second layer of coils independently. Further, the control system directs more current to the first layer of coils than the second layer of coils during a movement step to reduce the power consumption.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 17, 2019
    Inventors: Neyram Hemati, Michael B. Binnard
  • Patent number: 10078269
    Abstract: System and method for accurately measuring alignment of every exposure field on a pre-patterned wafer without reducing wafer-exposure throughput. Diffraction grating disposed in scribe-lines of such wafer, used as alignment marks, and array of encoder-heads (each of which is configured to define positional phase(s) of at least one such alignment mark) are used. Determination of trajectory of a wafer-stage scanning during the wafer-exposure in the exposure tool employs determining in-plane coordinates of such spatially-periodic alignment marks by simultaneously measuring position-dependent phases of signals produced by these marks as a result of recombination of light corresponding to different diffraction orders produced by these marks.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: September 18, 2018
    Assignee: NIKON CORPORATION
    Inventors: Eric Peter Goodwin, Michael B. Binnard, Ruslan Kurdyumov
  • Publication number: 20180217510
    Abstract: A position encoder for monitoring position of an object includes a target pattern, an illumination system, an image sensor, and a control system. The illumination system generates (i) a first illumination beam that is directed toward and impinges on the target pattern, the first illumination beam having a first beam characteristic; and (ii) a second illumination beam that is directed toward and impinges on the target pattern, the second illumination beam having a second beam characteristic that is different than the first beam characteristic. The image sensor is coupled to the object and is spaced apart from the target pattern. The image sensor senses a first set of information from the first illumination beam impinging on the target pattern and senses a second set of information from the second illumination beam impinging on the target pattern. The control system analyzes the first set of information and the second set of information to monitor the position of the object.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: J. Kyle Wells, Paul Derek Coon, Matthew D. Rosa, Johnathan Marquez, Michael B. Binnard, Steven Douglas Slonaker, Daniel Gene Smith, Stephen P. Renwick, Brett Herr
  • Publication number: 20180074417
    Abstract: An exposure apparatus (10) for transferring one or more features to a workpiece (22) includes an illumination source (44A); (ii) a chuck (40) that retains the workpiece (22); (iii) a chamber housing (28A) that encircles the chuck and the workpiece; and (iv) a temperature controller (32) (34) that adjusts the temperature of at least one of the chuck (40) and the workpiece (22) so that a predetermined temperature differential (309) exists between the chuck (40) and the workpiece (22) before transferring the features to the workpiece (22).
    Type: Application
    Filed: September 7, 2017
    Publication date: March 15, 2018
    Inventors: Michael B. Binnard, Paul Derek Coon
  • Publication number: 20170336715
    Abstract: Extreme ultra-violet (EUV) lithography ruling engine specifically configured to print one-dimensional lines on a target workpiece includes source of EUV radiation; a pattern-source defining 1D pattern; an illumination unit (IU) configured to irradiate the pattern-source; and projection optics (PO) configured to optically image, with a reduction factor N>1, the 1D pattern on image surface that is optically-conjugate to the 1D pattern. Irradiation of the pattern-source can be on-axis or off-axis. While 1D pattern has first spatial frequency, its optical image has second spatial frequency that is at least twice the first spatial frequency. The pattern-source can be flat or curved. The IU may include a relay reflector. A PO's reflector may include multiple spatially-distinct reflecting elements aggregately forming such reflector. The engine is configured to not allow formation of optical image of any 2D pattern that has spatial resolution substantially equal to a pitch of the 1D pattern of the pattern-source.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 23, 2017
    Inventors: Donis G. Flagello, David M. Williamson, Stephen P. Renwick, Daniel Gene Smith, Michael B. Binnard
  • Publication number: 20170336716
    Abstract: Extreme ultra-violet (EUV) lithography ruling engine specifically configured to print one-dimensional lines on a target workpiece includes source of EUV radiation; a pattern-source defining 1D pattern: an illumination unit (IU) configured to irradiate the pattern-source; and projection optics (PO) configured to optically image, with a reduction factor N>1, the 1D pattern on image surface that is optically-conjugate to the 1D pattern. Irradiation of the pattern-source can be on-axis or off-axis. While 1D pattern has first spatial frequency, its optical image has second spatial frequency that is at least twice the first spatial frequency. The pattern-source can be flat or curved. The IU may include a relay reflector. A PO's reflector may include multiple spatially-distinct reflecting elements aggregately forming such reflector. The engine is configured to not allow formation of optical image of any 2D pattern that has spatial resolution substantially equal to a pitch of the 1D pattern of the pattern-source.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 23, 2017
    Inventors: Donis G. Flagello, David M. Williamson, Stephen P. Renwick, Daniel Gene Smith, Michael B. Binnard