Patents by Inventor Michael C. Roberts

Michael C. Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949752
    Abstract: Disclosed is a mobile event streaming system that receives customer application lifecycle and user events including a message, event source and a destination then processes data for consumption by one or more customers, generating a secure data stream and sending the processed data over the generated data stream. An example system for receiving, processing, and delivering customer application lifecycle and user engagement data includes a server system having at least one processor, memory and a network interface where the memory stores program instructions for receiving, storing, processing and transmitting messages via the network interface. The mobile event streaming system may be a distributed content delivery service wherein the content delivered via the service is processed. Processing the data comprises the addition of metadata, one or more identifiers such as user, and event identifiers including predictions of future user engagement to enable real-time data consumption by customers.
    Type: Grant
    Filed: March 2, 2023
    Date of Patent: April 2, 2024
    Assignee: Airship Group, Inc.
    Inventors: Michael James Herrick, Adam C. Lowry, Cory David Hoffman Kolbeck, Michael Shane Robert McHugh
  • Publication number: 20240099734
    Abstract: Apparatuses, capacitor arrays, and methods for generating therapeutic compressed acoustic waves (e.g., shock waves). In the apparatuses and at least some of the methods, a plurality of electrodes can disposed in a chamber that is defined by a housing and configured to be filled with liquid, and a plurality of capacitors can be electrically connected to the electrodes and can be carried by (e.g., physically coupled to) the housing. Voltage pulses can be applied simultaneously to the plurality of electrodes (e.g., to begin to vaporize and ionize portions of the liquid to provide at least one inter-electrode conductive path between the plurality of electrodes) and to the capacitors to charge the plurality of capacitors). The plurality of capacitors can be configured to, upon reaching a threshold charge, discharge to the plurality of electrodes (e.g.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 28, 2024
    Inventors: Christopher C. Capelli, Michael Kishnevsky, Daniel Masse, John Summerson, David W. Robert, Walter Klemp, Robert Crowley
  • Patent number: 10525957
    Abstract: A vehicle includes a plurality of brake assemblies configured to control braking of a respective wheel of the vehicle. The brake assemblies includes a first brake assembly integrated with a smart actuator unit including a first actuator controller and a first electro-mechanical actuator that is configured to adjust a brake force applied to a first wheel coupled to the first brake assembly. A second brake assembly excludes an actuator controller and has installed therein a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel coupled to the second brake assembly. At least one electronic actuator driver unit is remotely located from the first and second brake assemblies, and is configured to output a high-power signal that drives the first and second electro-mechanical actuators in response to receiving a digital command signal from the first actuator controller.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 7, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan J. Houtman, Christopher C. Chappell, Kevin S. Kidston, Paul A. Kilmurray, Eric E. Krueger, Patrick J. Monsere, Brandon C. Pennala, Michael C. Roberts, Steven J. Weber
  • Patent number: 10507816
    Abstract: A vehicle with a fault tolerant electronic brake-by-wire (BBW) system includes a plurality of brake assemblies that control braking of a respective wheel of the vehicle. The brake assemblies include a first brake assembly and a second brake assembly. The first brake assembly is integrated with at least one enhanced brake actuator assembly including a first electronic actuator driver circuit in signal communication with a first electro-mechanical actuator. The first brake assembly is configured to adjust a brake force applied to a first wheel of the vehicle. The second brake assembly is integrated with at least one enhanced smart brake actuator assembly including a first actuator controller in signal communication with a second electronic actuator driver circuit. The second electronic actuator driver circuit is in signal communication with a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel of the vehicle.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 17, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Paul A. Kilmurray, Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Steven J. Weber
  • Patent number: 10501063
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electrical power circuits. Each brake assembly includes an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The electrical power circuits are located remotely from one another. Each power circuit is configured to drive a respective actuator. The vehicle further includes a first electronic brake system (EBS) controller and a second EBS controller. The first EBS controller is configured to output a first data command signal to control a first group of power circuits among the plurality of power circuits. The second EBS controller is configured to output a second data command signal to control a second group of power circuits among the plurality of power circuits. The second group excludes the power circuits from the first group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 10, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Paul A. Kilmurray, Steven J. Weber
  • Patent number: 10144402
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electronic brake system (EBS) controllers. The brake assemblies each include an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The EBS controllers are located remotely from one another. Each EBS controller has integrated therein an electronic actuator driver unit that includes an electronic power circuit configured to drive at least one of the electro-mechanical actuators. A first EBS controller is configured to drive a first group of electro-mechanical actuators, and a second EBS controller is configured to drive a second group of electro-mechanical actuators that exclude the electro-mechanical actuators of the first group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 4, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brandon C. Pennala, Christopher C. Chappell, Paul A. Kilmurray, Patrick J. Monsere, Eric E. Krueger, Alan J. Houtman, Kevin S. Kidston, Michael C. Roberts, Steven J. Weber
  • Patent number: 10137874
    Abstract: A brake pedal emulator for a brake-by-wire system of a vehicle extends and connects between a support structure and a brake pedal operatively engaged to the support structure. The brake pedal emulator includes a hydraulic cylinder having a magneto-rheological hydraulic fluid and an electrical element configured to carry an electrical current for controlling a viscosity of the magneto-rheological hydraulic fluid and thereby controlling a first force exerted by the hydraulic cylinder when actuated by the brake pedal.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: November 27, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brandon C. Pennala, Scott C. Mrdeza, Michael C. Roberts
  • Publication number: 20180056961
    Abstract: A vehicle includes a plurality of electronic brake system (EBS) controllers configured to detect at least one braking event, and a plurality of brake assemblies. Each brake assembly is coupled to a respective wheel of the vehicle and includes an enhanced smart actuator. The enhanced smart actuator further includes an electro-mechanical actuator, and at least one power circuit. The electro-mechanical actuator is configured to adjust a torque force applied to the respective wheel. The at least one electronic power circuit is configured to output a high-frequency switched high-power current drive signal that drives the electro-mechanical actuator. The EBS controllers control a first group of enhanced smart actuators independently from a second group of enhanced smart actuators that exclude the enhanced smart actuators of the first group.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 1, 2018
    Inventors: Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Paul A. Kilmurray, Steven J. Weber
  • Publication number: 20180056962
    Abstract: A vehicle with a fault tolerant electronic brake-by-wire (BBW) system includes a plurality of brake assemblies that control braking of a respective wheel of the vehicle. The brake assemblies include a first brake assembly and a second brake assembly. The first brake assembly is integrated with at least one enhanced brake actuator assembly including a first electronic actuator driver circuit in signal communication with a first electro-mechanical actuator. The first brake assembly is configured to adjust a brake force applied to a first wheel of the vehicle. The second brake assembly is integrated with at least one enhanced smart brake actuator assembly including a first actuator controller in signal communication with a second electronic actuator driver circuit. The second electronic actuator driver circuit is in signal communication with a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel of the vehicle.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Paul A. Kilmurray, Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Steven J. Weber
  • Publication number: 20180056965
    Abstract: A vehicle includes a plurality of brake assemblies configured to control braking of a respective wheel of the vehicle. The brake assemblies includes a first brake assembly integrated with a smart actuator unit including a first actuator controller and a first electro-mechanical actuator that is configured to adjust a brake force applied to a first wheel coupled to the first brake assembly. A second brake assembly excludes an actuator controller and has installed therein a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel coupled to the second brake assembly. At least one electronic actuator driver unit is remotely located from the first and second brake assemblies, and is configured to output a high-power signal that drives the first and second electro-mechanical actuators in response to receiving a digital command signal from the first actuator controller.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Alan J. Houtman, Christopher C. Chappell, Kevin S. Kidston, Paul A. Kilmurray, Eric E. Krueger, Patrick J. Monsere, Brandon C. Pennala, Michael C. Roberts, Steven J. Weber
  • Publication number: 20180056959
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electronic brake system (EBS) controllers. The brake assemblies each include an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The EBS controllers are located remotely from one another. Each EBS controller has integrated therein an electronic actuator driver unit that includes an electronic power circuit configured to drive at least one of the electro-mechanical actuators. A first EBS controller is configured to drive a first group of electro-mechanical actuators, and a second EBS controller is configured to drive a second group of electro-mechanical actuators that exclude the electro-mechanical actuators of the first group.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 1, 2018
    Inventors: Brandon C. Pennala, Christopher C. Chappell, Paul A. Kilmurray, Patrick J. Monsere, Eric E. Krueger, Alan J. Houtman, Kevin S. Kidston, Michael C. Roberts, Steven J. Weber
  • Publication number: 20180056960
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electrical power circuits. Each brake assembly includes an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The electrical power circuits are located remotely from one another. Each power circuit is configured to drive a respective actuator. The vehicle further includes a first electronic brake system (EBS) controller and a second EBS controller. The first EBS controller is configured to output a first data command signal to control a first group of power circuits among the plurality of power circuits. The second EBS controller is configured to output a second data command signal to control a second group of power circuits among the plurality of power circuits. The second group excludes the power circuits from the first group.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 1, 2018
    Inventors: Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Paul A. Kilmurray, Steven J. Weber
  • Publication number: 20180056964
    Abstract: A vehicle includes a plurality of brake assemblies, and a brake request input device. Each brake assembly is coupled to a respective wheel of the vehicle and is configured to control braking of the respective wheel. The brake request input device is configured to output an electronic brake request signal indicating a request to brake at least one of the wheels. Each brake assembly has integrated therein an enhanced smart actuator unit that includes an electronic actuator controller configured to control a braking torque applied to the respective wheel in response to receiving the brake request signal.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Paul A. Kilmurray, Eric E. Krueger, Kevin S. Kidston, Michael C. Roberts, Steven J. Weber, Patrick J. Monsere
  • Publication number: 20180037202
    Abstract: A brake pedal emulator for a brake-by-wire system of a vehicle extends and connects between a support structure and a brake pedal operatively engaged to the support structure. The brake pedal emulator includes a hydraulic cylinder having a magneto-rheological hydraulic fluid and an electrical element configured to carry an electrical current for controlling a viscosity of the magneto-rheological hydraulic fluid and thereby controlling a first force exerted by the hydraulic cylinder when actuated by the brake pedal.
    Type: Application
    Filed: August 8, 2016
    Publication date: February 8, 2018
    Inventors: Brandon C. Pennala, Scott C. Mrdeza, Michael C. Roberts
  • Publication number: 20180037207
    Abstract: A brake pedal apparatus for actuating a vehicle brake assembly includes a stationary structure, a brake pedal emulator assembly, and an emulator override device. The brake pedal emulator assembly includes a brake pedal operatively engaged to the stationary structure, and a brake pedal emulator operatively engaged between the stationary structure and the brake pedal along a centerline. The brake pedal emulator is configured to electrically operate the brake assembly. The emulator override device includes a mechanical linkage operatively engaged to the brake assembly, and a latch configured to selectively connect and disconnect the mechanical linkage from the brake pedal emulator assembly. The mechanical linkage is configured to mechanically operate the brake assembly via at least in-part movement of the brake pedal along the centerline.
    Type: Application
    Filed: August 8, 2016
    Publication date: February 8, 2018
    Inventors: Brandon C. Pennala, Michael C. Roberts, Christopher C. Chappell
  • Patent number: 9830051
    Abstract: According to an example computer-implemented method, shared media content is presented to a plurality of users during a collaborative session, with the session including a plurality of events. A breadcrumb trail of events occurring during the collaborative session is created. For each of the events, a descriptor is determined for the event, and the event is tagged in the breadcrumb trail with the descriptor. Responsive to receipt of a descriptor selection, a filtered breadcrumb trail including only events tagged with the selected descriptor is presented.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 28, 2017
    Assignee: CA, Inc.
    Inventors: Steven L. Greenspan, Michael C. Roberts, Maria C. Velez-Rojas, Serge Mankovskii
  • Publication number: 20160107530
    Abstract: A method and system for controlling a current flow through a charge connector to a charging system includes a charge connector including a plug connectable to a power outlet to receive a current flow, the plug including a temperature sensor to measure an interface temperature at the plug and outlet interface, the charge connector including a coupler connectable to an inlet of the charging system, where one of a control module of the charge connector and a controller of the charging system is operable to control the current flow to an adjusted level determined by one of the interface temperature and a voltage drop at the plug. A communication link may be established by a coupler element connected to an inlet element to transmit signals between the control module and connector. The charge connector may be connectable to a charging system of a plug-in electric vehicle.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 21, 2016
    Inventors: Michael C. Roberts, Calvin Goodman
  • Patent number: 8941658
    Abstract: A method for layered overview visualization of an IT environment having nodes and links related to the nodes, comprising initializing the layered overview visualization by establishing a number of hierarchical levels, combining the nodes and the links related to the nodes into a plurality of elements based on one of function and type, for each hierarchical level, assigning one or more of the plurality of elements to the level in accordance with one of the function and the type and determining overlap of the assigned elements. The method further comprises navigating the layered overview visualization by selecting a view, selecting a level of the hierarchical levels within the selected view, choosing the overlap of one or more of the assigned elements in the selected level and highlighting the chosen elements, and displaying on a screen the selected level and the highlighted chosen elements in the selected level.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: January 27, 2015
    Assignee: CA, Inc.
    Inventors: Serguei Mankovski, Maria Velez-Rojas, Michael C. Roberts, Esin Kiris
  • Patent number: 8768552
    Abstract: A vehicle brake system and method designed to maximize the contributions from a regenerative braking system, yet still provide adequate safety measures that address potential regenerative braking failure. According to one embodiment, the method determines both a requested deceleration from the driver and an actual deceleration experienced by the vehicle, and uses the difference between these two values to calculate a deceleration error that can be integrated over time and compared to an error threshold. If the integrated or accumulated deceleration error surpasses the error threshold, then the method may reduce or disable the regenerative braking system until it can confirm that it is operating properly.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: July 1, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric E. Krueger, Michael C. Roberts, Kevin S. Kidston, Paul A. Kilmurray
  • Publication number: 20130345913
    Abstract: A vehicle brake system and method designed to maximize the contributions from a regenerative braking system, yet still provide adequate safety measures that address potential regenerative braking failure. According to one embodiment, the method determines both a requested deceleration from the driver and an actual deceleration experienced by the vehicle, and uses the difference between these two values to calculate a deceleration error that can be integrated over time and compared to an error threshold. If the integrated or accumulated deceleration error surpasses the error threshold, then the method may reduce or disable the regenerative braking system until it can confirm that it is operating properly.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eric E. Krueger, Michael C. Roberts, Kevin S. Kidston, Paul A. Kilmurray