Patents by Inventor Michael D. Atchley

Michael D. Atchley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180099846
    Abstract: A housing contains a plurality of motorized transport units in a stacked relationship to one another, with a bottom-most one of the plurality of motorized transport units serving as a locomotion mechanism that selectively causes movement of the housing with the plurality of motorized transport units contained therein. By one approach the aforementioned housing has a cylindrical form factor and includes a cylindrically-shaped chamber configured to receive the motorized transport units. By one approach, for example, this housing includes no lifting mechanism to lift any of the motorized transport units into itself and further has no integral locomotion mechanism by which the housing can move itself. The interior of the housing can include at least one track formed therein to receive a corresponding part of each of the plurality of motorized transport units which the motorized transport units can engage to thereby lift themselves into the interior of the housing.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Inventors: Donald R. High, Michael D. Atchley, David C. Winkle
  • Publication number: 20180074523
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to access power level data corresponding to each of the multiple UAVs, and select a second UAV of the multiple UAVs based at least in part on a power level of the second UAV relative to a threshold power level corresponding to a first task to be performed and a predicted power usage by the second UAV while utilizing a first tool system temporarily cooperated with the second UAV in performing the first task.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180075760
    Abstract: Some embodiments provide an aerial monitoring system to monitor a geographic area, comprising: a unmanned aerial vehicle (UAV) comprising: a plurality of lift motors to drive a propeller; a substructural support supporting the lift motors and propellers; a UAV control circuit configured to control the operation of the lift motors; a rechargeable electrical power source that supplies electrical power to the UAV control circuit and the plurality of lift motors; a recharge control circuit; and a modifiable support system cooperated with the substructural support and supporting a set of photovoltaic cells electrically coupled with the rechargeable power source and configured to supply electrical power to the rechargeable power source, wherein the recharge control circuit is configured to control a modification of the modifiable support system to cause a physical modification of at least an orientation of the modifiable support system relative to the substructural support.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 15, 2018
    Inventors: John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Robert L. Cantrell, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074499
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074521
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a first unmanned aerial vehicle (UAV) comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the first UAV to move itself; and wherein the UAV control circuit when implementing code stored in memory is configured to identify, based at least in part on a first task performed using a first tool system temporarily coupled with the first UAV, a second task to be performed by the first UAV and to identify a different second tool system to be used to perform the second task.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180072416
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable UAV to move itself; and wherein a first UAV control circuit of a first UAV of the multiple UAVs, when implementing code stored in memory, is configured to identify, based at least in part on a first task performed using a first tool system temporarily coupled with the first UAV, a set of at least one task to be cooperatively performed by the first UAV and at least a second UAV of the multiple UAVs.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074488
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180072414
    Abstract: Systems, apparatuses, and methods are provided herein for unmanned flight optimization. A system for unmanned flight comprises a set of motors configured to provide locomotion to an unmanned aerial vehicle, a set of wings coupled to a body of the unmanned aerial vehicle via an actuator and configured to move relative to the body of the unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit. The control circuit being configured to: retrieve a task profile for a task assigned to the unmanned aerial vehicle, cause the set of motors to lift the unmanned aerial vehicle, detect condition parameters based on the sensor system, determine a position for the set of wings based on the task profile and the condition parameters, and cause the actuator to move the set of wings to the wing position while the unmanned aerial vehicle is in flight.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20180074518
    Abstract: Systems, apparatuses and methods are provided herein for unmanned flight optimization. A system for unmanned flight optimization comprises a flight system configured to provide locomotion to an unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit coupled to the flight system and the sensor system. The control circuit being configured to: retrieve a task profile for a task assigned to the unmanned aerial vehicle, detect condition parameters of the unmanned aerial vehicle based on the sensor system, determine whether to station the unmanned aerial vehicle based on the task profile and the condition parameters, and deactivate the flight system of the unmanned aerial vehicle while the unmanned aerial vehicle performs the task.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20180072415
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074522
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180065747
    Abstract: In some embodiments, methods and systems of dispensing an insecticide to defend a crop-containing area against crop-damaging pests include an unmanned vehicle having a sensor that detects a crop-damaging pest in the crop-containing area and captures pest detection data, and an insecticide output device including at least one insecticide directed at the pest. The unmanned vehicle transmits the captured pest detection data via the network to the computing device and, in response to receipt of the captured pest detection data via the network from the unmanned vehicle, the computing device accesses an electronic database to determine an identity of the at least one pest. Based on the determined identity of the crop-damaging pest, the computing device transmits a control signal to the unmanned vehicle to cause the insecticide output device of the unmanned vehicle to dispense one or more insecticides specific to the identified crop-damaging pest.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180068165
    Abstract: In some embodiments, methods and systems of identifying at least one pest based on crop damage detection in a crop-containing area include an unmanned vehicle including at least one sensor configured to detect at least one type of pest damage on at least one crop in the crop-containing area and to capture pest damage data. An electronic database includes pest damage identity data associated with one or more crop-damaging pests, and a computing device communicates with the unmanned vehicle and the electronic database via a network. The unmanned vehicle transmits the captured pest damage data via the network to the computing device and, in response to receipt of the captured pest damage data from the unmanned vehicle, the computing device accesses the pest damage identity data on the electronic database to determine an identity of one or more pests responsible for the detected type of pest crop damage.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180064049
    Abstract: In some embodiments, methods and systems of pollinating crops in a crop-containing area include at least one unmanned vehicle having a receptacle including pollen, a pollen dispenser configured to dispense the pollen from the receptacle onto the crops, and a sensor configured to detect presence of the pollen dispensed from the at least one pollen dispenser on the crops and interpret the presence of the pollen dispensed from the at least one pollen dispenser on the crops as a verification that the pollen dispensed from the at least one pollen dispenser was successfully applied to the crops.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180068164
    Abstract: In some embodiments, methods and systems of identifying at least one pest in a crop-containing area include an unmanned vehicle including a visible light video camera configured to detect a pest in the crop-containing area and to capture first pest detection data and an infrared video camera configured to detect a pest in the crop-containing area and to capture second pest detection data.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180068357
    Abstract: Systems, apparatuses, and methods are provided herein for providing in-store audio. A system for providing in-store audio comprises a motorized transport unit configured to travel around a retail space, the motorized transport unit comprising an audio device, a location sensor, and a communication device, and a central computer system coupled to the motorized transport unit via the communication device. The central computer system being configured to: determine a location of the motorized transport unit in the retail space based on the location sensor on the motorized transport unit, determine a context of the motorized transport unit based at least on the location of the motorized transport unit in the retail space, select an audio option based on the context of the motorized transport unit, and cause the audio device on the motorized transport unit to play an audio based on the audio option.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Donald R. High, Michael D. Atchley, Eric E. Welch
  • Publication number: 20180064094
    Abstract: In some embodiments, methods and systems of defending a crop-containing area against crop-damaging pests include an unmanned aerial vehicle including a sensor that detects one or more pests in the crop-containing area and an output device configured to eliminate the pest from the crop-containing area. One or more docking stations configured to accommodate the UAV are provided. A computing device configured to communicate with the UAV and the docking station over a network is provided. The UAV is configured to send pest detection data captured by a sensor of the UAV while patrolling the crop-containing area. In return, the computing device is configured to send a signal to the UAV to indicate instructions to the UAV as to how to move or activate the output device in order to eliminate the detected pest from the crop-containing area.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180065749
    Abstract: In some embodiments, methods and systems of pollinating crops include one or more unmanned vehicles including a pollen applicator configured to collect pollen from a flower of a first crop and to apply the pollen collected from the flower of the first crop onto a flower of a second crop and a sensor configured to detect presence of the pollen applied to the flower of the second crop by the pollen applicator to verify that the pollen collected from the flower of the first crop by the pollen applicator was successfully applied by the pollen applicator onto the flower of the second crop.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Patent number: 9908760
    Abstract: Some embodiments include a motorized transport unit providing customer assistance at a shopping facility, comprises: a transceiver; a control circuit; a motorized wheel system; a lift system; and a memory coupled to the control circuit and storing computer instructions that when executed by the control circuit cause the control circuit to: activate a motorized wheel system, while continuing to monitor location information, to position the motorized transport unit under the item container and aligned, based on the location information, relative to a frame of the item container; and activate the lift system to lift on the frame of the item container lifting a first portion of the item container such one or more wheels of the item container are lifted off of a floor while two or more other wheels of the item container remain in contact with the floor.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: March 6, 2018
    Assignee: Wal-Mart Stores, Inc.
    Inventors: Donald R. High, David C. Winkle, Michael D. Atchley
  • Publication number: 20180053369
    Abstract: Systems, apparatuses, and methods are provided herein for mobile vending. A system for mobile vending comprises a mobile vending machine comprising: an item dispenser configured to display a plurality of items for purchase, a set of motorized wheels, a navigation sensor device, a communication device, and, a control circuit configured to navigate the mobile vending machine based on navigation instructions; and a central computer system configured to communicate with the mobile vending machine via the communication device, the central computer system being configured to: determine a destination for the mobile vending machine, provide the navigation instructions to the mobile vending machine to cause the mobile vending machine to travel to the destination using the set of motorized wheels and the navigation sensor device.
    Type: Application
    Filed: July 12, 2017
    Publication date: February 22, 2018
    Inventors: Donald R. High, Brian G. McHale, Michael D. Atchley