Patents by Inventor Michael De Jong

Michael De Jong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140185991
    Abstract: Translating lens holder assemblies employing bore relief zones, as well as optical connectors employing such lens holder assemblies, are disclosed. In one embodiment, a lens holder assembly includes a lens holder body having a mating face, a first forward slide portion and a first rear slide portion disposed on a first side of the lens holder body, and a second forward slide portion and a second rear slide portion disposed on a second side of the lens holder body. The first forward slide portion is separated from the first rear slide portion by a first bore relief zone, and the second forward slide portion is separated from the second rear slide portion by a second bore relief zone. In one embodiment, the lens holder assembly further includes at least one groove alignment feature disposed in the lens holder body that is configured to support at least one GRIN lens.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: Corning Optical Communications LLC
    Inventors: Michael de Jong, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20140178010
    Abstract: Gradient index (GRIN) lens assemblies employing lens alignment channels, as well as fiber optic connectors and fiber optic cable assemblies employing such GRIN lens assemblies, are disclosed. In one embodiment, a GRIN lens assembly includes a lens holder body having a mating face, a surface extending from the mating face, and a lens alignment channel. The lens alignment channel is defined by a narrow portion extending from the surface to a first depth and at least partially along a length of the surface, and a wide portion extending from the narrow portion to a second depth. A lens opening defined by the wide portion of the lens alignment channel at the mating face is disposed in the mating face. The wide portion of the lens alignment channel is configured to support a GRIN lens disposed in the lens alignment channel.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Michael de Jong, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 8757893
    Abstract: Cable assemblies and optical connector subassemblies having retractable alignment pins and coded magnetic arrays for optical alignment are disclosed. In one embodiment, an optical connector subassembly includes a connector body, an optical coupling assembly within the connector body, first and second alignment pins, and a pin switch coupled to the first and second alignment pins. The connector body includes a front surface, a first pin bore and a second pin bore. The optical coupling assembly includes at least one magnetic component, and an optical coupling face. The optical coupling assembly receives at least one optical fiber. The first alignment pin is disposed within the first pin bore and the second alignment pin is disposed within the second pin bore. Actuation of the pin switch translates the first and second alignment pins between a protracted state and a retracted state.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: June 24, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Micah Colen Isenhour, Michael de Jong, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20140105543
    Abstract: Fiber optic modules, fiber optic connectors, and methods are disclosed. In one embodiment, a fiber optic module includes a body and a fiber tray. The body includes a fiber tray recess extending from a first surface, a fiber-end datum surface positioned an end of the fiber tray recess, and a plurality of lens surfaces. The plurality of lens surfaces, the fiber-end datum surface, and intervening portions of the body define a plurality of lenses each having a linear optical axis. The fiber tray includes a plurality of fiber support features disposed on a first surface. The plurality of fiber support features is configured to receive a plurality of optical fibers. The fiber tray is disposed within the fiber tray recess and secured to the body.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 17, 2014
    Applicant: Corning Cable Systems LLC
    Inventor: Michael de Jong
  • Publication number: 20140099058
    Abstract: Fiber trays and fiber optic modules and assemblies using the same are disclosed, wherein optical fibers are secured to a fiber tray that is then secured to a body of the fiber module. The body defines a plurality of lenses that reflect light using a total-internal-reflection surface to direct light to active optical components. The fiber tray is secured to the body such that the plurality of optical fibers may be secured within fiber support features of the body that align ends of the optical fibers to the lenses defined by the body. Optical-electrical connectors employing such two-piece fiber optic modules are also disclosed, as well as methods of processing a plurality of optical fibers using a fiber tray.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 10, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: Mathieu Charbonneau-Lefort, Michael de Jong, Dennis Michael Knecht, Craig Alan Strause, Thomas Theuerkorn
  • Patent number: 8677861
    Abstract: A bladeless stripping device includes a body having a cutting zone across the body forming a living hinge to fold the body along a fold area. An aperture may be located through the body and may be associated with the fold area. The aperture may change dimension as the body is folded and unfolded. The fiber aperture may receive for example an optical fiber in an unfolded state and may close upon for example the optical fiber in a folded state such that, when the bladeless stripping device is translated along for example the optical fiber at least one coating of for example the optical fiber is caused to be stripped away, revealing for example a bare glass fiber suitable, for example, for connectorizing or splicing.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: March 25, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Michael de Jong, Greg James Scherer, Howard Clark Schwartz, Craig Alan Strause
  • Patent number: 8651749
    Abstract: Optical fiber ferrules (10, 20) for making optical or optical and electrical connections are disclosed, along with receptacle and plug fiber optic interface devices (60, 70) using the ferrules, and cable assemblies (6, 7) using the fiber optic interface devices. The optical fiber ferrules support optical pathways (14) and have front ends (12F, 22F) with mating geometries that facilitate a relatively high number of mating/unmating cycles. The ferrule is translatable within the enclosure (62e, 72e). Resilient members (75) provide the ferrule with forward-bias and rear-bias positions when the fiber optic interface device is un-mated and mated, respectively.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: February 18, 2014
    Assignee: Corning Incorporated
    Inventors: Paulo Clóvis Dainese Júnior, Michael de Jong, Jeffery Alan DeMeritt, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20140037251
    Abstract: Dense shuttered fiber optic connectors and assemblies suitable for establishing optical connections for optical backplanes in equipment racks are disclosed. In one embodiment, a fiber optic connector assembly is provided. The fiber optic connector assembly comprises a fiber optic connector. The fiber optic connector assembly also comprises a slideable shutter disposed in the fiber optic connector. The slideable shutter has an opening(s) configured to be aligned with a plurality of lenses disposed in the fiber optic connector in an open position, and configured to block access to the plurality of lenses disposed in the fiber optic connector in a closed position. The fiber optic connector assembly also comprises an actuation member coupled to the slideable shutter configured to move the slideable shutter from the closed position to the open position.
    Type: Application
    Filed: July 26, 2013
    Publication date: February 6, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: Micah Colen Isenhour, Michael de Jong, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20140003767
    Abstract: An optical fiber segment holder includes a lens holder body comprising a mating surface having a light transmissive material. At least one optical fiber segment is disposed in the lens holder body. The at least one optical fiber segment having an end face located behind the mating surface such that light travels to or from the at least one optical fiber segment through the mating surface.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Inventors: Michael de Jong, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20140003772
    Abstract: Dust caps, fiber optic connectors, fiber optic splitter modules and fiber optic connector systems including interlocking aligning features for fiber optic connector parking in fiber distribution hub networks are disclosed. According to one embodiment, a dust cap for mounting upon a ferrule of a fiber optic connector includes a sleeve extending lengthwise between opposed first and second ends. The sleeve defines a lengthwise extending bore that opens through the first end for receiving at least a portion of the ferrule. The dust cap further includes an aligning feature at the second end of the sleeve. The aligning feature includes a neck portion and an interlocking portion such that the interlocking portion has a width that is greater than a width of the neck portion. The aligning feature is configured to slidably engage with a slot of a parking clip.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Alan Duncan Burkett, William Julius McPhil Giraud, Michael de Jong, Diana Rodriguez
  • Patent number: 8596884
    Abstract: An optical fiber mechanical splice connector system that couples with a field fiber includes a connector body comprising a ferrule receiving portion, a pellet receiving portion and a support portion between the ferrule receiving portion and pellet receiving portion. The pellet receiving portion includes one or more engagement fingers connected at a first end to the support portion and extending away from the ferrule receiving portion to a second, free end adjacent a pellet receiving opening of a pellet receiving cavity at the pellet receiving portion. A ferrule is connected to the connector body at the ferrule receiving portion. A stub fiber is captured within the ferrule. The stub fiber extends from the ferrule into a fiber receiving cavity provided within the connector body for connecting with the field fiber. A fiber carrying pellet carries the field fiber.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: December 3, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Brandon A. Barnes, Michael de Jong, Greg J. Scherer
  • Publication number: 20130243523
    Abstract: A device for retaining an attached part on a carrier part, including a clip part and an unlocking part displaceably supported in the clip part. In a release position of the unlocking part, latching legs of the clip part engage behind the carrier part while, in a dismantling position of the unlocking part, the latching legs are not engaged with the carrier part so that the attached part can be removed from the carrier part.
    Type: Application
    Filed: July 12, 2011
    Publication date: September 19, 2013
    Applicant: A. RAYMOND ET CIE
    Inventors: Michael De Jong, Jens Breitenfeld
  • Patent number: 8472773
    Abstract: A fiber optic connector holder having a frame and a plurality of clips attached to the frame is disclosed. The clips are adapted to releasably hold a plurality of fiber optic connectors in a certain arrangement. The fiber optic connectors may be attached at or through the boot to optical fibers, which may be, legs of a splitter module, fiber optic cables of a cable harness, or the like. The fiber optic connector holder and the optical fibers, and the splitter module, cable harness, or the like, may be shipped to an installation site. At the installation site, the fiber optic connector holder may be used to orient the fiber optic connectors to facilitate the engagement of the fiber optic connectors in and/or to parking locations.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: June 25, 2013
    Assignee: Corning Cable Systems LLC
    Inventor: Michael de Jong
  • Patent number: 8410909
    Abstract: Embodiments disclosed in the detailed description include cables and connector assemblies employing a furcation tube(s) for radio-frequency identification (RFID)-equipped connectors, and related systems and methods. In one embodiment, a connector assembly is provided that comprises a cable comprising a cable end, an interior area, at least one communication line, and at least one furcation tube disposed in the interior area. The connector assembly also comprises a connector operably connected to the cable end. At least one antenna wire is configured to be electrically connected to at least one RFID tag to serve as at least a portion of an RFID antenna for at least one RFID tag. At least a portion of the at least one antenna wire is disposed inside the furcation tube in the cable. In this manner, the antenna wire is secured inside the rugged packaging of the cable to protect the antenna wire.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: April 2, 2013
    Assignee: Corning Incorporated
    Inventor: Michael de Jong
  • Patent number: 8408811
    Abstract: Fiber optic connectors having an optical fiber stub that is fusion-spliced for optical connection and related tools for the fiber optic connectors are disclosed. Specifically, the connector assembly for fusion-splicing includes a fiber optic connector having an optic fiber stub and a boot attachable to the fiber optic connector. The boot is configured to transfer the majority of the axial force from the fiber optic cable to the fiber optic connector. Specifically, a splice housing for housing the fusion splice is configured for attachment to an end of the boot for transferring forces from the fiber optic cable to the boot. Consequently, the boot preferably has an extensibility of less than about 2 millimeters under an axial load of about fifteen pounds to inhibit excess forces from acting on the optical fiber stub.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 2, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Michael de Jong, Daniel Leyva, Jr., Charles A. Yow, Jr.
  • Publication number: 20130004130
    Abstract: An optical fiber mechanical splice connector system that couples with a field fiber includes a connector body comprising a ferrule receiving portion, a pellet receiving portion and a support portion between the ferrule receiving portion and pellet receiving portion. The pellet receiving portion includes one or more engagement fingers connected at a first end to the support portion and extending away from the ferrule receiving portion to a second, free end adjacent a pellet receiving opening of a pellet receiving cavity at the pellet receiving portion. A ferrule is connected to the connector body at the ferrule receiving portion. A stub fiber is captured within the ferrule. The stub fiber extends from the ferrule into a fiber receiving cavity provided within the connector body for connecting with the field fiber. A fiber carrying pellet carries the field fiber.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Inventors: Brandon A. Barnes, Michael de Jong, Greg J. Scherer
  • Publication number: 20120301218
    Abstract: A fastening device having spring legs formed onto a cover plate, including support flanges, which are disposed in support flange recesses. The fastening element thereby has a very high pull-out force.
    Type: Application
    Filed: January 25, 2011
    Publication date: November 29, 2012
    Applicant: A RAYMOND ET CIE
    Inventors: Michael De Jong, Jens Breitenfeld, Thomas Podsadny
  • Publication number: 20120263423
    Abstract: Adapters for receiving high-fiber count splicing connector assemblies are disclosed. The adapter includes a splice guide insert having a first plurality of bores that extend from a first end of the splice guide and a second plurality of bores that extend from a second end of the splice guide. The splice guide aligns the optical fibers of respective splicing connector assemblies received on opposite ends of the adapter for making an optical connection. Additionally, methods are disclosed for laser processing multiple rows of fibers.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Inventors: Michael De Jong, Radawan Hall, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20120247301
    Abstract: A bladeless stripping device includes a body having a cutting zone across the body forming a living hinge to fold the body along a fold area. An aperture may be located through the body and may be associated with the fold area. The aperture may change dimension as the body is folded and unfolded. The fiber aperture may receive for example an optical fiber in an unfolded state and may close upon for example the optical fiber in a folded state such that, when the bladeless stripping device is translated along for example the optical fiber at least one coating of for example the optical fiber is caused to be stripped away, revealing for example a bare glass fiber suitable, for example, for connectorizing or splicing.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventors: Michael de Jong, Greg James Scherer, Howard Clark Schwartz, Craig Alan Strause
  • Patent number: 8152384
    Abstract: Push-pull fiber optic connectors and cable assemblies having a latch that is actuated by a cam surface are disclosed. The fiber optic connectors include a ferrule and a housing having the latch. A shroud fits over a portion of the housing and allows the craft to grab the shroud and push the shroud and hence the fiber optic connector into a suitable adapter or the like. Likewise, the craft can grab the shroud and pull on the same to remove the fiber optic connector out of the adapter or the like. The cam surface is disposed on a decoupling member, wherein the decoupling member is attached to the shroud so the components can move together. Methods of making the push-pull fiber optic connector are also disclosed.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Michael de Jong, Paul X. Devereaux, Ashley W. Jones, Ronald L. Mudd