Patents by Inventor Michael H. Ngo

Michael H. Ngo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220249262
    Abstract: Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer PLLA and a rubbery polymer such as polycaprolactone.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 11, 2022
    Inventors: John J. STANKUS, Hugh ZHAO, Mikael TROLLSAS, Syed Faiyaz Ahmed HOSSAINY, Michael H. NGO, Yunbing WANG, Benjamyn SERNA
  • Publication number: 20220226133
    Abstract: A stent made from a material comprising a polymer is disclosed. The stent has a pre-crimp diameter and a wall thickness such that a ratio of the pre-crimp diameter to the wall thickness is between 30 and 60. The stent has a pattern of interconnected elements. The interconnected elements including a plurality of rings connected by links, wherein each ring includes struts and crowns, and the struts are configured to fold at the crowns when the stent is crimped to the balloon.
    Type: Application
    Filed: April 6, 2022
    Publication date: July 21, 2022
    Inventors: Mikael Trollsas, Michael H. Ngo, Boris Anukhin, Alexander Nikanorov, Syed Hossainy, John E. Papp, Dudley Jayasinghe, Zella Solter
  • Patent number: 11337835
    Abstract: Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: May 24, 2022
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: John J. Stankus, Hugh Zhao, Mikael Trollsas, Syed Faiyaz Ahmed Hossainy, Michael H. Ngo, Yunbing Wang, Benjamyn Serna
  • Patent number: 11324614
    Abstract: A medical device includes a polymer stent (or scaffold) crimped to a catheter balloon. The stent, after being expanded from a crimped state by the balloon, provides a crush recovery of about 90% of its expanded diameter after being pinched or crushed by an amount equal to about 50% of the expanded diameter. The stent has a pattern including a W-shaped or W-V shaped closed cell and links connecting the closed cells.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 10, 2022
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Mikael Trollsas, Michael H. Ngo, Boris Anukhin, Alexander Nikanorov, Syed Hossainy, John E. Papp, Dudley Jayasinghe, Zella Solter
  • Publication number: 20200060851
    Abstract: Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
    Type: Application
    Filed: November 5, 2019
    Publication date: February 27, 2020
    Inventors: John J. STANKUS, Hugh ZHAO, Mikael TROLLSAS, Syed Faiyaz Ahmed HOSSAINY, Michael H. NGO, Yunbing WANG, Benjamyn SERNA
  • Patent number: 10500076
    Abstract: Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: December 10, 2019
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: John J. Stankus, Hugh Zhao, Mikael Trollsas, Syed Faiyaz Ahmed Hossainy, Michael H. Ngo, Yunbing Wang, Benjamyn Serna
  • Publication number: 20190060097
    Abstract: A medical device includes a polymer stent (or scaffold) crimped to a catheter balloon. The stent, after being expanded from a crimped state by the balloon, provides a crush recovery of about 90% of its expanded diameter after being pinched or crushed by an amount equal to about 50% of the expanded diameter. The stent has a pattern including a W-shaped or W-V shaped closed cell and links connecting the closed cells.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Inventors: Mikael Trollsas, Michael H. Ngo, Boris Anukhin, Alexander Nikanorov, Syed Hossainy, John E. Papp, Dudley Jayasinghe, Zella Solter
  • Patent number: 10123894
    Abstract: A method of crimping a stent is disclosed. The stent includes a minimum crimped diameter such that in the minimum crimped diameter, a pair of stent rings, between which marker support structures reside, do not make contact with the marker support structures. The crimped profile of the stent of the present invention can be as small as the crimped profile of a same stent but without the maker support structures.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: November 13, 2018
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Mikael Trollsas, Michael H. Ngo, Boris Anukhin, Alexander Nikanorov, Syed Hossainy, John E. Papp, Dudley Jayasinghe, Zella Solter
  • Publication number: 20180318116
    Abstract: A scaffold is formed by several segments joined or connected to each other by only at least one coupling. The coupling decouples the segments in the axial direction over a finite distance of axial displacement. The scaffold when implanted in a peripheral vessel reduces loading on rings of a segment due to the decoupling of the segments in the axial direction over the finite distance.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 8, 2018
    Inventors: Erik David Eli, Syed Hossainy, Mikael Trollsas, Michael H. Ngo, Stephen Pacetti, Michael Green, John Papp
  • Patent number: 10039656
    Abstract: A scaffold is formed by several segments joined or connected to each other by only at least one coupling. The coupling decouples the segments in the axial direction over a finite distance of axial displacement. The scaffold when implanted in a peripheral vessel reduces loading on rings of a segment due to the decoupling of the segments in the axial direction over the finite distance.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: August 7, 2018
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Erik David Eli, Syed Hossainy, Mikael Trollsas, Michael H. Ngo, Stephen Pacetti, Michael Green, John Papp
  • Publication number: 20180133040
    Abstract: Bioabsorbable scaffolds are disclosed with a rigid polymer component and a rubbery polymer component. The rubbery polymer component is miscible, partially miscible, or immiscible with the rigid polymer component.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: John STANKUS, Yunbing WANG, Mikael TROLLSAS, Syed Faiyaz Ahmed HOSSAINY, Michael H. NGO, Dariush DAVALIAN
  • Patent number: 9907685
    Abstract: A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold has a pattern including an asymmetric closed cell connecting links connecting the closed cells.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: March 6, 2018
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Mikael Trollsas, Michael H. Ngo, Boris Anukhin, Syed Hossainy
  • Patent number: 9867728
    Abstract: A method of manufacturing a stent is disclosed. The stent includes a minimum crimped diameter such that in the minimum crimped diameter, a pair of stent rings, between which marker support structures reside, do not make contact with the marker support structures. The crimped profile of the stent of the present invention can be as small as the crimped profile of a same stent but without the marker support structures.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: January 16, 2018
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Mikael Trollsas, Michael H. Ngo, Boris Anukhin, Alexander Nikanorov, Syed Hossainy, John E. Papp, Dudley Jayasinghe, Zella Solter
  • Publication number: 20170367860
    Abstract: A method of crimping a stent is disclosed. The stent includes a minimum crimped diameter such that in the minimum crimped diameter, a pair of stent rings, between which marker support structures reside, do not make contact with the marker support structures. The crimped profile of the stent of the present invention can be as small as the crimped profile of a same stent but without the maker support structures.
    Type: Application
    Filed: September 8, 2017
    Publication date: December 28, 2017
    Inventors: Mikael TROLLSAS, Michael H. NGO, Boris ANUKHIN, Alexander NIKANOROV, Syed HOSSAINY, John E. PAPP, Dudley JAYASINGHE, Zella SOLTER
  • Patent number: 9827119
    Abstract: A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold also has a reduced crimped profile and a modification of the scaffold's ring structure at the crowns that contributes to the reduced crimped profile.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: November 28, 2017
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Boris Anukhin, Michael H. Ngo, Mikael Trollsas, Syed Hossainy, John Papp
  • Publication number: 20170290688
    Abstract: Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
    Type: Application
    Filed: May 5, 2017
    Publication date: October 12, 2017
    Inventors: John J. Stankus, Hugh Zhao, Mikael Trollsas, Syed Faiyaz Ahmed Hossainy, Michael H. Ngo, Yunbing Wang, Benjamyn Serna
  • Patent number: 9770351
    Abstract: A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold has a pattern including an asymmetric closed cell connecting links connecting the closed cells.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: September 26, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Mikael Trollsas, Michael H. Ngo, Boris Anukhin, Alexander Nikanorov, Syed Hossainy, John E. Papp, Dudley Jayasinghe, Zella Solter
  • Patent number: 9763818
    Abstract: A method of crimping a stent is disclosed. The stent includes a minimum crimped diameter such that in the minimum crimped diameter, a pair of stent rings, between which marker support structures reside, do not make contact with the marker support structures. The crimped profile of the stent of the present invention can be as small as the crimped profile of a same stent but without the maker support structures.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: September 19, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Mikael Trollsas, Michael H. Ngo, Boris Anukhin, Alexander Nikanorov, Syed Hossainy, John E. Papp, Dudley Jayasinghe, Zella Solter
  • Patent number: 9737638
    Abstract: A poly(ester amide) polymer having free carboxylic acid pendant groups and method of making and using the same are disclosed.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: August 22, 2017
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Nam D. Pham, Michael H. Ngo, Mikael O. Trollsas
  • Publication number: 20170189586
    Abstract: This invention is generally related to coating for implantable medical devices, such as drug delivery vascular stents, and methods of fabricating coated implantable medical devices.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Inventors: Michael H. NGO, Syed Faiyaz Ahmed HOSSAINY, Florencia LIM, O. Mikael TROLLSAS