Patents by Inventor Michael J. Mende

Michael J. Mende has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240175719
    Abstract: A multipurpose spacer having a spacer body with a ground lead, an inner electrical connection, and an outer electrical connection. The multipurpose spacer provides grounding, securing, and low thermal conductivity advantages. The multipurpose spacer is mounted and connected in an assembly in high-frequency electronics testing devices. The multipurpose spacer provides a substantial reduction in error signal modulation bandwidth and improved high-frequency performance.
    Type: Application
    Filed: November 30, 2023
    Publication date: May 30, 2024
    Inventors: Michael J. Mende, Mark Heimann, Richard Booman, Michael Engels, Benno Jacobs
  • Publication number: 20240125816
    Abstract: A probe head with a cylindrical portion and an oblique truncated portion angled downward toward a high-powered electronic device under testing. The probe head has a proximal end comprising an oblique truncated cone portion angled relative to the longitudinal axis at an input angle and has an analog signal input. The probe head has a digital signal output provided on the distal end of the housing.
    Type: Application
    Filed: October 13, 2023
    Publication date: April 18, 2024
    Inventors: Michael J Mende, Mark Heimann, Richard Booman, Philipp Palffy-Daun-Seiler, Michael Engels, Nadja Laeaeperi, Benno Jacobs, Michael D Stevens, Nicolas Frabasile, Peter Hildenhagen, Kai Klein, Jurij Weber, Iris Zimmermann, Juergen Trueller, Thomas Podrebersek, Michael Eube, Frank Pannes, Matthew M Mende
  • Publication number: 20230266369
    Abstract: A test and measurement probe system, including an input to receive an input signal, the input signal including a low frequency (LF) and/or direct current (DC) component and an alternating current (AC) component, an extractor circuit, such as an AC coupling circuit or a LF and/or DC rejection circuit, configured to receive the input signal and to separate the AC component and the LF and/or DC component from the input signal, a first output to output the alternating current component to the test and measurement instrument, and a second output to output the direct current component to the test and measurement instrument. In some embodiments, the LF and/or DC component is digitized prior to being output by the second output.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 24, 2023
    Applicant: Tektronix, Inc.
    Inventor: Michael J. Mende
  • Publication number: 20230155679
    Abstract: A temperature-independent optical link for converting a received electrical signal to an analog signal. The temperature-independent optical link comprises a temperature-controlled transmitter chamber housing an ETO transmitter and a feedback-loop temperature control system. The optical link is housed in a probe head having a power supply device, and a probe tip. The temperature-independent optical link is used in a method for converting a received electrical signal to an analog signal.
    Type: Application
    Filed: November 16, 2022
    Publication date: May 18, 2023
    Inventors: Michael J Mende, Mark Heimann, Richard Booman, Michael Engels
  • Patent number: 11635452
    Abstract: A test and measurement probe system (100,104), including an input (106) to receive an input signal, the input signal including a low frequency (LF) and/or direct current (DC) component and an alternating current (AC) component, an extractor circuit (110), such as an AC coupling circuit or a LF and/or DC rejection circuit, configured to receive the input signal and to separate the AC component and the LF and/or DC component from the input signal, a first output (118) to output the alternating current component to the test and measurement instrument, and a second output to output the direct current component to the test and measurement instrument. In some embodiments, the LF and/or DC component is digitized prior to being output by the second output.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: April 25, 2023
    Assignee: Tektronix, Inc.
    Inventor: Michael J. Mende
  • Patent number: 10753961
    Abstract: Disclosed is a differential test probe tip. The probe tip comprises a socket of electrically conductive material at a proximate end of the probe tip. The socket includes a concavity to receive a signal pin. The probe tip also comprises a reference body of conductive material surrounding the socket. The probe tip further comprises a insulating spacer element of non-conductive material surrounding the reference body at the proximate end of the probe tip. The insulating spacer element includes a signal port to receive the signal pin into the socket. The insulating spacer element further includes a reference port to receive a reference pin and maintain the reference pin in electrical communication with a proximate end of the reference body.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: August 25, 2020
    Assignee: Tektronix, Inc.
    Inventors: Michael J. Mende, David T. Engquist, Richard A. Booman
  • Patent number: 10684311
    Abstract: The disclosure includes an electro-optical sensor. The electro-optical sensor includes a test signal input to receive a test signal from a device under test (DUT). A bias circuit is employed to generate a bias signal. The electro-optical sensor also includes a Mach-Zehnder Modulator (MZM) that employs an optical input, an optical output, and a bias input. The MZM is configured to receive an optical carrier signal via the optical input. The MZM also receives both the test signal and the bias signal on the bias input. The MZM modulates the test signal from the bias input onto the optical carrier to generate an optical signal while operating in a mode selected by the bias signal. The MZM also outputs the optical signal over the optical output.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: June 16, 2020
    Assignee: Tektronix, Inc.
    Inventors: Michael J. Mende, Richard A. Booman
  • Publication number: 20200132731
    Abstract: A test and measurement probe system (100,104), including an input (106) to receive an input signal, the input signal including a low frequency (LF) and/or direct current (DC) component and an alternating current (AC) component, an extractor circuit (110), such as an AC coupling circuit or a LF and/or DC rejection circuit, configured to receive the input signal and to separate the AC component and the LF and/or DC component from the input signal, a first output (118) to output the alternating current component to the test and measurement instrument, and a second output to output the direct current component to the test and measurement instrument. In some embodiments, the LF and/or DC component is digitized prior to being output by the second output.
    Type: Application
    Filed: July 13, 2018
    Publication date: April 30, 2020
    Inventor: Michael J. Mende
  • Patent number: 10585118
    Abstract: Disclosed is a test and measurement probe. The test and measurement probe includes a probe tip to connect to a Device Under Test (DUT). The probe tip includes a Resistor Capacitor (RC) probe tip network coupled to a test signal channel. The test and measurement probe also includes at least one variable resistor coupled to the test signal channel. The at least one variable resistor is set to provide an adjustable resistance to compensate for frequency variation in the RC probe tip network.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 10, 2020
    Assignee: Tektronix, Inc.
    Inventors: Michael J. Mende, Richard A. Booman, Wayne M. Wilburn
  • Patent number: 10514394
    Abstract: A probe or accessory for use with an electrical test and measurement instrument can include an input to receive an input signal from a device under test (DUT), a clamp control unit or oscilloscope to apply a clamping/limiting level to the input signal to generate an output signal, and/or a control unit output port to provide the clamped/limited output signal to an oscilloscope.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: December 24, 2019
    Assignee: Tektronix, Inc.
    Inventors: Michael J. Mende, Richard A. Booman, Wayne M. Wilburn
  • Publication number: 20190204356
    Abstract: A mechanism is included for receiving a phase modulated optical signal. The phase modulated signal is modulated by a remote electrical test signal at a sensor head. A reference optical signal is also received. A phase difference between the phase modulated optical signal and the reference optical signal is then determined. The phase difference is employed to recover the remote electrical test signal from the sensor head. The phase difference may be determined by employing a phase modulator in a controller that tracks a phase modulator in the sensor head. The phase difference may also be determined by comparison of the signals in the complex signal domain.
    Type: Application
    Filed: December 31, 2017
    Publication date: July 4, 2019
    Applicant: Tektronix, Inc.
    Inventors: Michael J. Mende, Daniel G. Knierim, Richard A. Booman
  • Patent number: 10302676
    Abstract: A flexible resistive tip cable assembly includes a probe Radio Frequency (RF) connector structured to receive a RF differential signal and a testing connection assembly. A coaxial cable is structured to conduct the RF differential signal between the probe RF connector and the testing connection assembly. The coaxial cable includes a cable for conducting the differential signal, and a plurality of magnetic elements positioned along a length of the cable and structured to isolate the differential signal from common mode interference. The magnetic elements are separated from adjacent magnetic elements by a gap with elastomeric elements is positioned in each gap to provide cable flexibility. The assembly may also include an Electrically Erasable Programmable Read Only Memory (EEPROM) loaded with an attenuation associated with the flexible resistive tip cable assembly for use in signal testing by a device coupled to the testing connection assembly.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: May 28, 2019
    Assignee: Tektronix, Inc.
    Inventors: Michael J. Mende, Gary W. Reed, James D. Pileggi, Karl A. Rinder, Richard A. Booman, Martin Van Pelt
  • Patent number: 10234501
    Abstract: A sensor head of a test and measurement instrument can include an input configured to receive an input signal from a device under test (DUT), an optical voltage sensor having signal input electrodes and control electrodes or one set of electrodes, wherein the input is connected to the signal input electrodes, and a bias control unit connected to the control electrodes and configured to reduce an error signal or the input signal bias control signal are electrically combined and applied to a single set of electrodes.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: March 19, 2019
    Assignee: Tektronix, Inc.
    Inventors: Michael J. Mende, Richard A. Booman
  • Patent number: 10225022
    Abstract: An electro-optical sensor comprises an optical input configured to receive an optical carrier via an upstream fiber. The electro-optical sensor also includes an optical modulator configured to modulate an electrical signal onto the optical carrier to create an optical signal. The electro-optical sensor further includes an optical output configured to transmit the optical signal via a downstream fiber. The electro-optical sensor employs a variation output configured to transmit variation data indicating variation in the received optical carrier to support compensation for corresponding variation in the optical signal.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: March 5, 2019
    Assignee: Tektronix, Inc.
    Inventors: Richard A. Booman, Michael J. Mende, Daniel G. Knierim
  • Publication number: 20180328961
    Abstract: Disclosed is a test and measurement probe. The test and measurement probe includes a probe tip to connect to a Device Under Test (DUT). The probe tip includes a Resistor Capacitor (RC) probe tip network coupled to a test signal channel. The test and measurement probe also includes at least one variable resistor coupled to the test signal channel. The at least one variable resistor is set to provide an adjustable resistance to compensate for frequency variation in the RC probe tip network.
    Type: Application
    Filed: September 29, 2017
    Publication date: November 15, 2018
    Applicant: Tektronix, Inc.
    Inventors: Michael J. Mende, Richard A. Booman, Wayne M. Wilburn
  • Publication number: 20180328964
    Abstract: The disclosure includes an electro-optical sensor. The electro-optical sensor includes a test signal input to receive a test signal from a device under test (DUT). A bias circuit is employed to generate a bias signal. The electro-optical sensor also includes a Mach-Zehnder Modulator (MZM) that employs an optical input, an optical output, and a bias input. The MZM is configured to receive an optical carrier signal via the optical input. The MZM also receives both the test signal and the bias signal on the bias input. The MZM modulates the test signal from the bias input onto the optical carrier to generate an optical signal while operating in a mode selected by the bias signal. The MZM also outputs the optical signal over the optical output.
    Type: Application
    Filed: April 9, 2018
    Publication date: November 15, 2018
    Applicant: Tektronix, Inc.
    Inventors: Michael J. Mende, Richard A. Booman
  • Publication number: 20180328962
    Abstract: Disclosed is a differential test probe tip. The probe tip comprises a socket of electrically conductive material at a proximate end of the probe tip. The socket includes a concavity to receive a signal pin. The probe tip also comprises a reference body of conductive material surrounding the socket. The probe tip further comprises a insulating spacer element of non-conductive material surrounding the reference body at the proximate end of the probe tip. The insulating spacer element includes a signal port to receive the signal pin into the socket. The insulating spacer element further includes a reference port to receive a reference pin and maintain the reference pin in electrical communication with a proximate end of the reference body.
    Type: Application
    Filed: August 25, 2017
    Publication date: November 15, 2018
    Inventors: Michael J. Mende, David T. Engquist, Richard A. Booman
  • Patent number: D947693
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: April 5, 2022
    Assignee: Tektronix, Inc.
    Inventors: David Thomas Engquist, Heather J. Vermilyea, Karl A. Rinder, Michael J. Mende, Tony Lee Tarr
  • Patent number: D992437
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: July 18, 2023
    Assignee: Tektronix, Inc.
    Inventors: David Thomas Engquist, Heather J. Vermilyea, Karl A. Rinder, Michael J. Mende, Tony Lee Tarr
  • Patent number: D1031997
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: June 18, 2024
    Assignee: PMK Mess- und Kommunikationstechnik, GmbH
    Inventors: Michael J Mende, Mark Heimann, Richard Booman, Philipp Palffy-Daun-Seiler, Michael Engels, Nadja Laaperi, Benno Jacobs, Michael D Stevens, Nicolas Frabasile, Peter Hildenhagen, Kai Klein, Jurij Weber, Iris Zimmermann, Juergen Trueller, Thomas Podrebersek, Michael Eube, Frank Pannes, Matthew M Mende