Patents by Inventor Michael J. Nystrom

Michael J. Nystrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180210195
    Abstract: Examples are disclosed herein that relate to reducing reflectivity in a micro-LED array in a display device to avoid ghost images. One example provides a method comprising forming a structure comprising a plurality of light emitters arranged to form a scannable light-emitter array, and forming a material having a lower reflectivity than inactive regions located between the light emitters.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 26, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Poon Yarn Chee, Joshua Owen Miller, Cynthia Sue Bell, Michael J. Nystrom
  • Patent number: 9874774
    Abstract: Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described. Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes. Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate. The effect of device operation on incident light is optically sensed. The sensed effect is analyzed to identify device defects. Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: January 23, 2018
    Assignee: LENSVECTOR INC.
    Inventors: Bahram Afshari, Karen Asatryan, Peter P Clark, Tigran Galstian, Michael J. Nystrom, Vladimir Presniakov, Sergei Yakovenko, Armen Zohrabyan
  • Patent number: 9548145
    Abstract: A method of forming a microelectronic assembly includes positioning a support structure adjacent to an active region of a device but not extending onto the active region. The support structure has planar sections. Each planar section has a substantially uniform composition. The composition of at least one of the planar sections differs from the composition of at least one of the other planar sections. A lid is positioned in contact with the support structure and extends over the active region. The support structure is bonded to the device and to the lid.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: January 17, 2017
    Assignee: Invensas Corporation
    Inventors: Michael J. Nystrom, Giles Humpston
  • Publication number: 20170003539
    Abstract: A tunable liquid crystal optical device defining an optical aperture and having a layered structure. The device includes a film electrode formed on a surface of a first substrate and covered by a second substrate, and a contact structure filling a volume within the layered structure and contacting the film electrode. The contact structure is located outside of the optical aperture and provides an electrical connection surface much larger than a thickness of the film electrode, such that reliable electrical connections may be made to the electrode, particularly in the context of wafer scale manufacturing of such a device.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 5, 2017
    Inventors: Michael J. NYSTROM, Viktor Konovalov, Rubin Ma, Amir Tork, Aram Bagramyan, Vladimir Presniakov
  • Patent number: 9239479
    Abstract: A tunable liquid crystal optical device is described. The optical device has an electrode arrangement associated with a liquid crystal cell and includes a hole patterned electrode, wherein control of the liquid crystal cell depends on electrical characteristics of liquid crystal optical device layers. The optical device further has a circuit for measuring said electrical characteristics of the liquid crystal optical device layers, and a drive signal circuit having at least one parameter adjusted as a function of the measured electrical characteristics. The drive signal circuit generates a control signal for the electrode arrangement.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: January 19, 2016
    Assignee: LENSVECTOR INC.
    Inventors: Behzad Khodadad, Michael J. Nystrom, Bahram Afshari, Karen Asatryan, Tigran Galstian
  • Publication number: 20150346524
    Abstract: Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described. Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes. Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate. The effect of device operation on incident light is optically sensed. The sensed effect is analyzed to identify device defects. Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
    Type: Application
    Filed: August 4, 2015
    Publication date: December 3, 2015
    Inventors: Bahram AFSHARI, Karen ASATRYAN, Peter P. CLARK, Tigran GALSTIAN, Michael J. NYSTROM, Vladimir PRESNIAKOV, Sergei YAKOVENKO, Armen ZOHRABYAN
  • Patent number: 9140920
    Abstract: Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate The effect of device operation on incident light is optically sensed The sensed effect is analyzed to identify device defects Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: September 22, 2015
    Assignee: LensVector, Inc.
    Inventors: Bahram Afshari, Karen Asatryan, Peter P. Clark, Tigran Galstian, Michael J. Nystrom, Vladimir Presniakov, Sergei Yakovenko, Armen Zohrabyan
  • Publication number: 20140224419
    Abstract: A method of forming a microelectronic assembly includes positioning a support structure adjacent to an active region of a device but not extending onto the active region. The support structure has planar sections. Each planar section has a substantially uniform composition. The composition of at least one of the planar sections differs from the composition of at least one of the other planar sections. A lid is positioned in contact with the support structure and extends over the active region. The support structure is bonded to the device and to the lid.
    Type: Application
    Filed: December 4, 2013
    Publication date: August 14, 2014
    Applicant: INVENSAS CORPORATION
    Inventors: Michael J. Nystrom, Giles Humpston
  • Publication number: 20140076845
    Abstract: A tunable liquid crystal optical device defining an optical aperture and having a layered structure. The device includes a film electrode formed on a surface of a first substrate and covered by a second substrate, and a contact structure filling a volume within the layered structure and contacting the film electrode. The contact structure is located outside of the optical aperture and provides an electrical connection surface much larger than a thickness of the film electrode, such that reliable electrical connections may be made to the electrode, particularly in the context of wafer scale manufacturing of such a device.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 20, 2014
    Applicant: LensVector, Inc.
    Inventors: Michael J. NYSTROM, Viktor KONOVALOV, Rubin MA, Amir TORK, Aram BAGRAMYAN, Vladimir PRESNIAKOV
  • Patent number: 8604605
    Abstract: A method of forming a microelectronic assembly includes positioning a support structure adjacent to an active region of a device but not extending onto the active region. The support structure has planar sections. Each planar section has a substantially uniform composition. The composition of at least one of the planar sections differs from the composition of at least one of the other planar sections. A lid is positioned in contact with the support structure and extends over the active region. The support structure is bonded to the device and to the lid.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: December 10, 2013
    Assignee: Invensas Corp.
    Inventors: Michael J. Nystrom, Giles Humpston
  • Patent number: 8558985
    Abstract: A tunable liquid crystal optical device defining an optical aperture and having a layered structure. The device includes a film electrode formed on a surface of a first substrate and covered by a second substrate, and a contact structure filling a volume within the layered structure and contacting the film electrode. The contact structure is located outside of the optical aperture and provides an electrical connection surface much larger than a thickness of the film electrode, such that reliable electrical connections may be made to the electrode, particularly in the context of wafer scale manufacturing of such a device.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 15, 2013
    Assignee: LensVector Inc.
    Inventors: Michael J. Nystrom, Viktor Konovalov, Rubin Ma, Amir Tork, Aram Bagramyan, Vladimir Presniakov
  • Publication number: 20130250197
    Abstract: A tunable liquid crystal optical device is described. The optical device has an electrode arrangement associated with a liquid crystal cell and includes a hole patterned electrode, wherein control of the liquid crystal cell depends on electrical characteristics of liquid crystal optical device layers. The optical device further has a circuit for measuring said electrical characteristics of the liquid crystal optical device layers, and a drive signal circuit having at least one parameter adjusted as a function of the measured electrical characteristics. The drive signal circuit generates a control signal for the electrode arrangement.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 26, 2013
    Applicant: LENSVECTOR INC.
    Inventors: Behzad Khodadad, Michael J. Nystrom, Bahram Afshari, Karen Asatryan, Tigran Galstian
  • Publication number: 20130033673
    Abstract: Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate The effect of device operation on incident light is optically sensed The sensed effect is analyzed to identify device defects Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
    Type: Application
    Filed: October 27, 2010
    Publication date: February 7, 2013
    Applicant: LENSVECTOR, INC.
    Inventors: Bahram Afshari, Karen Asatryan, Peter P. Clark, Tigran Galstian, Michael J. Nystrom, Vladimir Presniakov, Sergei Yakovenko, Armen Zohrabyan
  • Publication number: 20120026451
    Abstract: A tunable liquid crystal lens device is provided that uses a number of conductive elements and external contacts all located along a common side of a device housing. The device may include planar electrodes, a patterned electrode, a heating element and a sensor, which may be in different layers of the device. The device is produced as part of an array of such devices and, in addition to the devices in the array, a plurality of electrical conductive strips are used to provide high conductivity connection to conductive layers in each of the devices, thereby allowing simultaneous testing of the devices in the array.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 2, 2012
    Applicant: LENSVECTOR INC.
    Inventor: Michael J. NYSTROM
  • Publication number: 20120019761
    Abstract: A tunable liquid crystal optical device defining an optical aperture and having a layered structure. The device includes a film electrode formed on a surface of a first substrate and covered by a second substrate, and a contact structure filling a volume within the layered structure and contacting the film electrode. The contact structure is located outside of the optical aperture and provides an electrical connection surface much larger than a thickness of the film electrode, such that reliable electrical connections may be made to the electrode, particularly in the context of wafer scale manufacturing of such a device.
    Type: Application
    Filed: June 5, 2009
    Publication date: January 26, 2012
    Applicant: LENSVECTOR, INC.
    Inventors: Michael J. Nystrom, Viktor Konovalov, Rubin Ma, Amir Tork, Aram Bagramyan, Vladimir Presniakov
  • Publication number: 20110181797
    Abstract: Liquid crystal optoelectronic devices are produced by fabricating a wafer-level component structure and affixing a plurality of discrete components to a surface structure prior to singulating the individual devices therefrom. After singulation, the individual devices include a portion of the wafer-level fabricated structure and at least of the discrete components. The wafer-level structure may include a liquid crystal and controlling electrodes, and the discrete components may include fixed lenses or image sensors. The discrete components may be located on either or both of two sides of the wafer-level structure. Multiple liquid crystal layers may be used to reduce nonuniformities in the interaction with light from different angles, and to control light of different polarizations. The liquid crystal devices may function as optoelectronic devices such as tunable lenses, shutters or diaphragms.
    Type: Application
    Filed: September 1, 2009
    Publication date: July 28, 2011
    Applicant: LENSVECTOR INC.
    Inventors: Tigran Galstian, Derek Alexandre Proudian, Behram Afshari, Michael J. Nystrom, Peter Clark
  • Patent number: 7936062
    Abstract: Packaged microelectronic elements are provided. In an exemplary embodiment, a microelectronic element having a front face and a plurality of peripheral edges bounding the front face has a device region at the front face and a contact region with a plurality of exposed contacts adjacent to at least one of the peripheral edges. The packaged element may include a plurality of support walls overlying the front face of the microelectronic element such that a lid can be mounted to the support walls above the microelectronic element. For example, the lid may have an inner surface confronting the front face. In a particular embodiment, some of the contacts can be exposed beyond edges of the lid.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: May 3, 2011
    Assignee: Tessera Technologies Ireland Limited
    Inventors: Giles Humpston, Michael J. Nystrom, Vage Oganesian, Yulia Aksenton, Osher Avsian, Robert Burtzlaff, Avi Dayan, Andrey Grinman, Felix Hazanovich, Ilya Hecht, Charles Rosenstein, David Ovrutsky, Mitchell Hayes Reifel
  • Patent number: 7858445
    Abstract: A microelectronic device includes a chip having a front surface and a rear surface, the front surface having an active region and a plurality of contacts exposed at the front surface outside of the active region. The device further includes a lid overlying the front surface. The lid has edges bounding the lid, at least one of the edges including one or more outer portions and one or more recesses extending laterally inwardly from the outer portions, with the contacts being aligned with the recesses and exposed through them.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: December 28, 2010
    Assignee: Tessera, Inc.
    Inventors: Kenneth Allen Honer, Giles Humpston, David B. Tuckerman, Michael J. Nystrom
  • Patent number: 7737513
    Abstract: The present invention provides an integrated circuit chip assembly and a method of manufacturing the same. The assembly includes a package element having a top surface and an integrated circuit chip having a top surface, a bottom surface, edge surface between the top and bottom surfaces, and contacts exposed at the top surface. The package element is disposed below the chip with the top surface of the package element facing toward the bottom surface of the chip. At least one spacer element resides between the top surface of the package element and the bottom surface of the chip. According to one embodiment, the at least one spacer element may form a substantially closed cavity between the package element and the integrated circuit chip. According to another embodiment, first conductive features may extend from the contacts of the chip along the top surface, and at least some of said first conductive features extend along at least one of the edge surfaces of the chip.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: June 15, 2010
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Charles White, Michael J. Nystrom
  • Patent number: 7593636
    Abstract: The present invention relates to a camera module. The camera module includes a circuit panel having a top side, a bottom side and transparent region, the circuit panel having conductors. The module further includes sensor unit disposed on the bottom side of the circuit panel, and the sensor unit includes a semiconductor chip having a front surface including an imaging area facing in a forward direction in alignment with the transparent region and an imaging circuit adapted to generate signals representative of an optical image impinging on the imaging area. The module further includes posts protruding from the bottom side of the circuit panel, wherein at least some of the posts being engagement posts having bottom surfaces, and at least some of the bottom surfaces abutting an engagement surface of the sensor unit.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: September 22, 2009
    Assignee: Tessera, Inc.
    Inventors: Michael J. Nystrom, David B. Tuckerman, Belgacem Haba, Giles Humpston, Jesse Burl Thompson