Patents by Inventor Michael J. Rooks

Michael J. Rooks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8754530
    Abstract: A method for fabricating a transistor having self-aligned borderless electrical contacts is disclosed. A gate stack is formed on a silicon region. An off-set spacer is formed surrounding the gate stack. A sacrificial layer that includes a carbon-based film is deposited overlying the silicon region, the gate stack, and the off-set spacer. A pattern is defined in the sacrificial layer to define a contact area for the electrical contact. The pattern exposes at least a portion of the gate stack and source/drain. A dielectric layer is deposited overlying the sacrificial layer that has been patterned and the portion of the gate stack that has been exposed. The sacrificial layer that has been patterned is selectively removed to define the contact area at the height that has been defined. The contact area for the height that has been defined is metalized to form the electrical contact.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Katherina E. Babich, Josephine B. Chang, Nicholas C. Fuller, Michael A. Guillorn, Isaac Lauer, Michael J. Rooks
  • Patent number: 8445892
    Abstract: Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Conal E. Murray, Michael J. Rooks
  • Patent number: 8399314
    Abstract: Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: March 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Conal E. Murray, Michael J. Rooks
  • Publication number: 20120280211
    Abstract: Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 8, 2012
    Applicant: International Business Machines Corporation
    Inventors: Guy Cohen, Conal E. Murray, Michael J. Rooks
  • Patent number: 8241957
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Publication number: 20120190155
    Abstract: A FET structure with a nanowire forming the FET channel, and doped source and drain regions formed by radial epitaxy from the nanowire body is disclosed. A top gated and a bottom gated nanowire FET structures are discussed. The source and drain fabrication can use either selective or non-selective epitaxy.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: Jack O. Chu, Guy M. Cohen, John A. Ott, Michael J. Rooks, Paul M. Solomon
  • Patent number: 8153494
    Abstract: A FET structure with a nanowire forming the FET channel, and doped source and drain regions formed by radial epitaxy from the nanowire body is disclosed. A top gated and a bottom gated nanowire FET structures are discussed. The source and drain fabrication can use either selective or non-selective epitaxy.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: April 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Guy M. Cohen, John A. Ott, Michael J. Rooks, Paul M. Solomon
  • Patent number: 8119206
    Abstract: A method of forming a negative coefficient of thermal expansion particle includes flattening a hollow sphere made of a first material, annealing the flattened hollow sphere at a reference temperature above a predetermined maximum use temperature to set a stress minimum of the flattened hollow sphere, and forming a coating made of a second material on the flattened hollow sphere at the reference temperature, the second material having a lower coefficient of thermal expansion than that of the first material, the negative coefficient of thermal expansion particle characterized by volumetric contraction when heated.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, Xiao Hu Liu, S. Jay Chey, Joseph Zinter, Jr., Michael J. Rooks, Brian Richard Sundolf, Jon Alfred Casey
  • Patent number: 8120138
    Abstract: A structure for aligning a first set of features of a fabrication level of an integrated circuit chip to an electron beam alignment target. The structure including a first trench in a semiconductor substrate, the first trench extending from a top surface of the substrate into the substrate a first distance; an electron back-scattering layer in a bottom of the first trench; a dielectric capping layer in the trench over the back-scattering layer; and a second trench in the substrate, the second trench extending from the top surface of the substrate into the substrate a second distance, the second distance less than the first distance.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: David Michael Fried, John Michael Hergenrother, Sharee Jane McNab, Michael J. Rooks, Anna Topol
  • Publication number: 20110233522
    Abstract: Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Applicant: International Business Machines Corporation
    Inventors: Guy Cohen, Conal E. Murray, Michael J. Rooks
  • Patent number: 8008095
    Abstract: A pillar structure that is contacted by a vertical contact is formed in an integrated circuit. A hard mask is formed and utilized to pattern a least a portion of the pillar structure. The hard mask comprises carbon. Subsequently, the hard mask is removed. A conductive material is then deposited in a region previously occupied by the hard mask to form the vertical contact. The hard mask may, for example, comprise diamond-like carbon. The pillar structure may have a width or diameter less than about 100 nanometers.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Gregory Costrini, Christopher Vincent Jahnes, Michael J. Rooks, Jonathan Zanhong Sun
  • Patent number: 7999251
    Abstract: A FET structure with a nanowire forming the FET channel, and doped source and drain regions formed by radial epitaxy from the nanowire body is disclosed. A top gated and a bottom gated nanowire FET structures are discussed. The source and drain fabrication can use either selective or non-selective epitaxy.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: August 16, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Guy M. Cohen, John A. Ott, Michael J. Rooks, Paul M. Solomon
  • Publication number: 20110034047
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: International Business Machines Corporation
    Inventors: Gareth Geoffrey HOUGHAM, S. Jay CHEY, James Patrick DOYLE, Xiao Hu LIU, Christopher V. JAHNES, Paul Alfred LAURO, Nancy C. LaBIANCA, Michael J. ROOKS
  • Patent number: 7883919
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Patent number: 7696057
    Abstract: A method for aligning a first set of features of a fabrication level of an integrated circuit chip to an electron beam alignment target including a high atomic weight layer formed in a substrate and forming the first set of features using electron beam lithography and for aligning a second set of features of the same fabrication level of the integrated circuit chip to an optical alignment target formed in the substrate and forming the second set of features using photolithography, the optical alignment target itself is aligned to the electron beam alignment target. Also a method of forming and a structure of the electron beam alignment target.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: David Michael Fried, John Michael Hergenrother, Sharee Jane McNab, Michael J. Rooks, Anna Topol
  • Publication number: 20100038723
    Abstract: A method for fabricating a transistor having self-aligned borderless electrical contacts is disclosed. A gate stack is formed on a silicon region. An off-set spacer is formed surrounding the gate stack. A sacrificial layer that includes a carbon-based film is deposited overlying the silicon region, the gate stack, and the off-set spacer. A pattern is defined in the sacrificial layer to define a contact area for the electrical contact. The pattern exposes at least a portion of the gate stack and source/drain. A dielectric layer is deposited overlying the sacrificial layer that has been patterned and the portion of the gate stack that has been exposed. The sacrificial layer that has been patterned is selectively removed to define the contact area at the height that has been defined. The contact area for the height that has been defined is metalized to form the electrical contact.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 18, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Katherina E. Babich, Josephine B. Chang, Nicholas C. Fuller, Michael A. Guillorn, Isaac Lauer, Michael J. Rooks
  • Publication number: 20090311835
    Abstract: A FET structure with a nanowire forming the FET channel, and doped source and drain regions formed by radial epitaxy from the nanowire body is disclosed. A top gated and a bottom gated nanowire FET structures are discussed. The source and drain fabrication can use either selective or non-selective epitaxy.
    Type: Application
    Filed: August 14, 2009
    Publication date: December 17, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Guy M. Cohen, John A. Ott, Michael J. Rooks, Paul M. Solomon
  • Publication number: 20090263991
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 22, 2009
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Publication number: 20090214780
    Abstract: A negative coefficient of thermal expansion particle includes a first bilayer having a first bilayer inner layer and a first bilayer outer layer, and a second bilayer having a second bilayer inner layer and a second bilayer outer layer. The first and second bilayers are joined together along perimeters of the first and second bilayer outer layers and first and second bilayer inner layers, respectively. The first bilayer inner layer and the second bilayer inner layer are made of a first material and the first bilayer outer layer and the second bilayer outer layer are made of a second material. The first material has a greater coefficient of thermal expansion than that of the second material.
    Type: Application
    Filed: May 7, 2009
    Publication date: August 27, 2009
    Applicant: International Business Machines
    Inventors: Gareth Geoffrey Hougham, Xiao Hu Liu, S. Jay Chey, Joseph Zinter, JR., Michael J. Rooks, Brian Richard Sundlof, Jon Alfred Casey
  • Publication number: 20090212388
    Abstract: A structure for aligning a first set of features of a fabrication level of an integrated circuit chip to an electron beam alignment target. The structure including a first trench in a semiconductor substrate, the first trench extending from a top surface of the substrate into the substrate a first distance; an electron back-scattering layer in a bottom of the first trench; a dielectric capping layer in the trench over the back-scattering layer; and a second trench in the substrate, the second trench extending from the top surface of the substrate into the substrate a second distance, the second distance less than the first distance.
    Type: Application
    Filed: May 6, 2009
    Publication date: August 27, 2009
    Applicant: International Business Machines Corporation
    Inventors: David Michael Fried, John Michael Hergenrother, Sharee Jane McNab, Michael J. Rooks, Anna Topol