Patents by Inventor Michael J. Rooks

Michael J. Rooks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7579069
    Abstract: A negative coefficient of thermal expansion particle includes a first bilayer having a first bilayer inner layer and a first bilayer outer layer, and a second bilayer having a second bilayer inner layer and a second bilayer outer layer. The first and second bilayers are joined together along perimeters of the first and second bilayer outer layers and first and second bilayer inner layers, respectively. The first bilayer inner layer and the second bilayer inner layer are made of a first material and the first bilayer outer layer and the second bilayer outer layer are made of a second material. The first material has a greater coefficient of thermal expansion than that of the second material.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: August 25, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, Xiao Hu Liu, S. Jay Chey, James Patrick Doyle, Joseph Zinter, Jr., Michael J. Rooks, Brian Richard Sundlof, Jon Alfred Casey
  • Patent number: 7572499
    Abstract: A contact magnetic transfer (CMT) master template has a flexible plastic film with a planarized top or upper surface containing magnetic islands separated from one another by nonmagnetic regions. The flexible plastic film is secured at its perimeter to a silicon annulus that provides rigid support at the perimeter of the film. The plastic film is preferably polyimide that has recesses filled with the magnetic material that form the pattern of magnetic islands. The upper surfaces of the islands and the upper surfaces of the nonmagnetic regions form a continuous planar surface. The nonmagnetic regions are formed of chemical-mechanical-polishing (CMP) stop layer material that remains after a CMP process has planarized the upper surface of the plastic film.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: August 11, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, A. David Erpelding, Jordan Asher Katine, Quang Le, Kim Y. Lee, Jui-Lung Li, Michael J. Rooks
  • Patent number: 7556979
    Abstract: A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 7, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Patent number: 7550361
    Abstract: A method for aligning a first set of features of a fabrication level of an integrated circuit chip to an electron beam alignment target formed in a substrate and forming the first set of features using electron beam lithography and for aligning a second set of features of the same fabrication level of the integrated circuit chip to an optical alignment target formed in the substrate and forming the second set of features using photolithography, the optical alignment target itself is aligned to the electron beam alignment target. Also a method of forming and a structure of the electron beam alignment target.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: June 23, 2009
    Assignee: International Business Machines Corporation
    Inventors: David Michael Fried, John Michael Hergenrother, Sharee Jane McNab, Michael J. Rooks, Anna Topol
  • Patent number: 7525109
    Abstract: A method for operating a Cartesian-type electron beam (e-beam) lithography (EBL) tool enables the efficient and precise writing of a closed curvilinear pattern, such as a circle, over a wide area of a workpiece. The curvilinear pattern overlies a plurality of contiguous fields of the EBL tool's x-y positioning stage, and the stage is moved along a path defined by the contiguous fields. Alignment marks associated with the first and next-to-last fields are formed on the specimen. The alignment marks are used to adjust the shape of the last field so that when the e-beam is scanned in the last field there is a substantially continuous connection of the pattern between the next-to-last field and the first field. The invention is particularly applicable to making a master disk with concentric circular tracks for nanoimprinting patterned magnetic recording disks.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: April 28, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R. Albrecht, Zvonimir Bandic, Michael J. Rooks
  • Publication number: 20090091037
    Abstract: A pillar structure that is contacted by a vertical contact is formed in an integrated circuit. A hard mask is formed and utilized to pattern a least a portion of the pillar structure. The hard mask comprises carbon. Subsequently, the hard mask is removed. A conductive material is then deposited in a region previously occupied by the hard mask to form the vertical contact. The hard mask may, for example, comprise diamond-like carbon. The pillar structure may have a width or diameter less than about 100 nanometers.
    Type: Application
    Filed: October 3, 2007
    Publication date: April 9, 2009
    Inventors: Solomon Assefa, Gregory Costrini, Christopher Vincent Jahnes, Michael J. Rooks, Jonathan Zanhong Sun
  • Patent number: 7417315
    Abstract: A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: August 26, 2008
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Publication number: 20080157404
    Abstract: A method for aligning a first set of features of a fabrication level of an integrated circuit chip to an electron beam alignment target formed in a substrate and forming the first set of features using electron beam lithography and for aligning a second set of features of the same fabrication level of the integrated circuit chip to an optical alignment target formed in the substrate and forming the second set of features using photolithography, the optical alignment target itself is aligned to the electron beam alignment target. Also a method of forming and a structure of the electron beam alignment target.
    Type: Application
    Filed: January 2, 2007
    Publication date: July 3, 2008
    Inventors: David Michael Fried, John Michael Hergenrother, Sharee Jane McNab, Michael J. Rooks, Anna Topol
  • Publication number: 20080157260
    Abstract: A method for aligning a first set of features of a fabrication level of an integrated circuit chip to an electron beam alignment target including a high atomic weight layer formed in a substrate and forming the first set of features using electron beam lithography and for aligning a second set of features of the same fabrication level of the integrated circuit chip to an optical alignment target formed in the substrate and forming the second set of features using photolithography, the optical alignment target itself is aligned to the electron beam alignment target. Also a method of forming and a structure of the electron beam alignment target.
    Type: Application
    Filed: January 2, 2007
    Publication date: July 3, 2008
    Inventors: David Michael Fried, John Michael Hergenrother, Sharee Jane McNab, Michael J. Rooks, Anna Topol
  • Publication number: 20080061284
    Abstract: A FET structure with a nanowire forming the FET channel, and doped source and drain regions formed by radial epitaxy from the nanowire body is disclosed. A top gated and a bottom gated nanowire FET structures are discussed. The source and drain fabrication can use either selective or non-selective epitaxy.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 13, 2008
    Applicant: International Business Machines Corporation
    Inventors: Jack O. Chu, Guy M. Cohen, John A. Ott, Michael J. Rooks, Paul M. Solomon
  • Patent number: 7160477
    Abstract: A contact magnetic transfer (CMT) master template is made by first adhering a plastic film to a first surface of a silicon wafer. A resist pattern is then formed on the polyimide film and the polyimide is reactive-ion-etched through the resist to form recesses. The resist is removed and a chemical-mechanical-polishing (CMP) stop layer is deposited over the non-recessed regions of the polyimide, and optionally into the bottoms of the recesses. A layer of magnetic material is then deposited over the polyimide film to fill the recesses. A CMP process is then performed to remove magnetic material above the recesses and above the non-recessed regions and continued until the CMP stop layer is reached. The resulting upper surface of the polyimide film is then a continuous planar film of magnetic islands and regions of CMP stop layer material that function as the nonmagnetic regions of the template.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: January 9, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, A. David Erpelding, Jordan Asher Katine, Quang Le, Kim Y. Lee, Jui-Lung Li, Michael J. Rooks
  • Patent number: 6821715
    Abstract: A suspended resist bridge suitable for lithographically patterning MR sensors having trackwidths narrower than 0.2 micron is fabricated using the method of the present invention. First, PMGI is spun onto a substrate to form a first thin resist layer. Next, PMMA is spun onto the first resist layer to form a second resist layer. The PMMA layer is exposed to an electron beam to pattern the trackwidth of the MR sensors. E-beam exposed PMMA is then developed in an IPA solution. The resist structure is then placed in a basic solution for dissolving PMGI, which results in a fully undercut resist bridge that is used for patterning the MR sensors.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: November 23, 2004
    Assignee: International Business Machines Corporation
    Inventors: Robert Edward Fontana, Jr., Jordan A. Katine, Jennifer Liu, Scott A. MacDonald, Michael J. Rooks, Hugo Alberto Emilio Santini
  • Publication number: 20040110322
    Abstract: A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed.
    Type: Application
    Filed: December 5, 2002
    Publication date: June 10, 2004
    Applicant: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Publication number: 20020167764
    Abstract: A suspended resist bridge suitable for lithographically patterning MR sensors having trackwidths narrower than 0.2 micron is fabricated using the method of the present invention. First, PMGI is spun onto a substrate to form a first thin resist layer. Next, PMMA is spun onto the first resist layer to form a second resist layer. The PMMA layer is exposed to an electron beam to pattern the trackwidth of the MR sensors. E-beam exposed PMMA is then developed in an IPA solution. The resist structure is then placed in a basic solution for dissolving PMGI, which results in a fully undercut resist bridge that is used for patterning the MR sensors.
    Type: Application
    Filed: May 10, 2001
    Publication date: November 14, 2002
    Inventors: Robert Edward Fontana, Jordan A. Katine, Jennifer Lu, Scott A. MacDonald, Michael J. Rooks, Hugo Alberto Emilio Santini
  • Patent number: 6440639
    Abstract: A high-aspect ratio resist profile is obtained using a development process wherein a mixture of an alcohol and water is used as the developer. The alcohol/water mixture is non-toxic, and does not cause excess swelling and cracking of the resist during the development process.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: August 27, 2002
    Assignee: International Business Machines Corporation
    Inventors: Robert E. Fontana, Jr., Jordan A. Katine, Ernst Kratschmer, Michael J. Rooks, Ching H. Tsang, Raman Gobichettipalayam Viswanathan