Patents by Inventor Michael J. Root

Michael J. Root has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230141396
    Abstract: Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
    Type: Application
    Filed: October 12, 2022
    Publication date: May 11, 2023
    Inventors: Troy Anthony Giese, Ignacio Chi, Michael J. Root, Larry Michael Killeen
  • Patent number: 11471691
    Abstract: Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: October 18, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Troy Anthony Giese, Ignacio Chi, Michael J. Root, Larry Michael Killeen
  • Patent number: 11253711
    Abstract: An example includes a capacitor case sealed to retain electrolyte, at least one anode disposed in the capacitor case, the at least one anode comprising a sintered portion disposed on a substrate, an anode conductor coupled to the substrate in electrical communication with the sintered portion, the anode conductor sealingly extending through the capacitor case to an anode terminal disposed on the exterior of the capacitor case with the anode terminal in electrical communication with the sintered portion, a second electrode disposed in the capacitor case, a separator disposed between the second electrode and the anode and a second electrode terminal disposed on an exterior of the capacitor case and in electrical communication with the second electrode, with the anode terminal and the second electrode terminal electrically isolated from one another.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: February 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Michael J. Root, Eric Stemen
  • Patent number: 11207533
    Abstract: The present subject matter includes an implantable medical device with a capture feature at or near the proximal end. In some cases, the capture feature includes a hold that is configured to facilitate a releasable connection with a delivery device that is used to deliver the implantable medical device to a target implant site.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: December 28, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Root, Nick A. Youker, Benjamin R. Fruland, Keith R. Maile, Robert S. Harguth
  • Patent number: 11147979
    Abstract: An implantable medical device (IMD) with an inductive coil for wireless communication and/or power transfer. The inductive coil may be disposed about a housing of the IMD. The housing may include a magnetically permeable material that is configured to operate as a flux concentrator for concentrating non-radiative near-field energy through the inductive coil. In some cases, the near-field energy may be captured and converted into electrical energy that may be used to recharge a rechargeable power source of the IMD.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: October 19, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: William J. Linder, Keith R. Maile, Brendan Early Koop, Michael J. Root
  • Publication number: 20200238095
    Abstract: Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 30, 2020
    Inventors: Troy Anthony Giese, Ignacio Chi, Michael J. Root, Larry Michael Killeen
  • Patent number: 10682522
    Abstract: An implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can include one or more MRI Safe components. In an example, the implantable device includes a battery including a first electrode and a second electrode separate from the first electrode. The second electrode includes a first surface and a second surface. The second electrode includes a slot through the second electrode from the first surface toward the second surface. The slot extends from a perimeter of the second electrode to an interior of the second electrode. The slot is configured to at least partially segment a surface area of the second electrode to reduce a radial current loop size in the second electrode.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: June 16, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Lyden, Michael J. Root, Kurt E. Koshiol, Lisa B. Schmalhurst, Yingbo Li, Masoud Ameri
  • Publication number: 20200069951
    Abstract: The present subject matter includes an implantable medical device with a capture feature at or near the proximal end. In some cases, the capture feature includes a hold that is configured to facilitate a releasable connection with a delivery device that is used to deliver the implantable medical device to a target implant site.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Root, Nick A. Youker, Benjamin R. Fruland, Keith R. Maile, Robert S. Harguth
  • Patent number: 10507329
    Abstract: The present subject matter includes an implantable medical device with a capture feature at or near the proximal end. In some cases, the capture feature includes a hold that is configured to facilitate a releasable connection with a delivery device that is used to deliver the implantable medical device to a target implant site.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: December 17, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Root, Nick A. Youker, Benjamin R. Fruland, Keith R. Maile, Robert S. Harguth
  • Patent number: 10396359
    Abstract: A method includes treating a CFx material with a base during the formation of a CFx cathode; and assembling the treated CFx material into a cathode electrode and assembling the cathode electrode with a lithium anode electrode and an electrolyte into a cell.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: August 27, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ignacio Chi, Steven P. Findell, Todd Eric Bofinger, Michael J. Root
  • Publication number: 20190172653
    Abstract: An example includes a capacitor case sealed to retain electrolyte, at least one anode disposed in the capacitor case, the at least one anode comprising a sintered portion disposed on a substrate, an anode conductor coupled to the substrate in electrical communication with the sintered portion, the anode conductor sealingly extending through the capacitor case to an anode terminal disposed on the exterior of the capacitor case with the anode terminal in electrical communication with the sintered portion, a second electrode disposed in the capacitor case, a separator disposed between the second electrode and the anode and a second electrode terminal disposed on an exterior of the capacitor case and in electrical communication with the second electrode, with the anode terminal and the second electrode terminal electrically isolated from one another.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Gregory J. Sherwood, Michael J. Root, Eric Stemen
  • Publication number: 20190151669
    Abstract: An implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can include one or more MRI Safe components. In an example, the implantable device includes a battery including a first electrode and a second electrode separate from the first electrode. The second electrode includes a first surface and a second surface. The second electrode includes a slot through the second electrode from the first surface toward the second surface. The slot extends from a perimeter of the second electrode to an interior of the second electrode. The slot is configured to at least partially segment a surface area of the second electrode to reduce a radial current loop size in the second electrode.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventors: Michael J. Lyden, MIchael J. Root, Kurt E. Koshiol, Lisa B. Schmalhurst, Yingbo Li, Masoud Ameri
  • Patent number: 10236131
    Abstract: An example includes a capacitor case sealed to retain electrolyte, at least one anode disposed in the capacitor case, the at least one anode comprising a sintered portion disposed on a substrate, an anode conductor coupled to the substrate in electrical communication with the sintered portion, the anode conductor sealingly extending through the capacitor case to an anode terminal disposed on the exterior of the capacitor case with the anode terminal in electrical communication with the sintered portion, a second electrode disposed in the capacitor case, a separator disposed between the second electrode and the anode and a second electrode terminal disposed on an exterior of the capacitor case and in electrical communication with the second electrode, with the anode terminal and the second electrode terminal electrically isolated from one another.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: March 19, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Michael J. Root, Eric Stemen
  • Patent number: 10220216
    Abstract: An implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can include one or more MRI Safe components. In an example, the implantable device includes a battery including a first electrode and a second electrode separate from the first electrode. The second electrode includes a first surface and a second surface. The second electrode includes a slot through the second electrode from the first surface toward the second surface. The slot extends from a perimeter of the second electrode to an interior of the second electrode. The slot is configured to at least partially segment a surface area of the second electrode to reduce a radial current loop size in the second electrode.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: March 5, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Lyden, Michael J. Root, Kurt E. Koshiol, Lisa B. Schmalhurst, Yingbo Li, Masoud Ameri
  • Patent number: 10096429
    Abstract: This document provides an apparatus including a sintered electrode, a second electrode and a separator material arranged in a capacitive stack. A conductive interconnect couples the sintered electrode and the second electrode. Embodiments include a clip interconnect. In some embodiments, the interconnect includes a comb-shaped connector. In some embodiments, the interconnect includes a wire snaked between adjacent sintered substrates.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 9, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Michael J. Root, Jay E. Daley, Eric Stemen
  • Publication number: 20180218843
    Abstract: This disclosure relates to methods and apparatus for enhanced dielectric properties for electrolytic capacitors to store energy in an implantable medical device. One aspect of the present subject matter includes a method for manufacturing a capacitor adapted to be disposed in an implantable device housing. An embodiment of the method includes providing a dielectric comprising aluminum oxide and doping the aluminum oxide with an oxide having a dielectric constant greater than aluminum oxide. Doping the aluminum oxide includes using sol-gel based chemistry, electrodeposition or atomic layer deposition (ALD) in various embodiments.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventors: Gregory J. Sherwood, Michael J. Root, Mary M. Byron
  • Publication number: 20180140852
    Abstract: An implantable medical device (IMD) with an inductive coil for wireless communication and/or power transfer. The inductive coil may be disposed about a housing of the IMD. The housing may include a magnetically permeable material that is configured to operate as a flux concentrator for concentrating non-radiative near-field energy through the inductive coil. In some cases, the near-field energy may be captured and converted into electrical energy that may be used to recharge a rechargeable power source of the IMD.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 24, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: William J. Linder, Keith R. Maile, Brendan Early Koop, Michael J. Root
  • Patent number: 9959978
    Abstract: This disclosure relates to methods and apparatus for enhanced dielectric properties for electrolytic capacitors to store energy in an implantable medical device. One aspect of the present subject matter includes a method for manufacturing a capacitor adapted to be disposed in an implantable device housing. An embodiment of the method includes providing a dielectric comprising aluminum oxide and doping the aluminum oxide with an oxide having a dielectric constant greater than aluminum oxide. Doping the aluminum oxide includes using sol-gel based chemistry, electrodeposition or atomic layer deposition (ALD) in various embodiments.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 1, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Michael J. Root, Mary M. Byron
  • Publication number: 20170301476
    Abstract: This document provides an apparatus including a sintered electrode, a second electrode and a separator material arranged in a capacitive stack. A conductive interconnect couples the sintered electrode and the second electrode. Embodiments include a clip interconnect. In some embodiments, the interconnect includes a comb-shaped connector. In some embodiments, the interconnect includes a wire snaked between adjacent sintered substrates.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Inventors: Gregory J. Sherwood, Michael J. Root, Jay E. Daley, Eric Stemen
  • Patent number: 9721731
    Abstract: This document provides an apparatus including a sintered electrode, a second electrode and a separator material arranged in a capacitive stack. A conductive interconnect couples the sintered electrode and the second electrode. Embodiments include a clip interconnect. In some embodiments, the interconnect includes a comb-shaped connector. In some embodiments, the interconnect includes a wire snaked between adjacent sintered substrates.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 1, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Michael J. Root, Jay E. Daley, Eric Stemen