Patents by Inventor Michael Kern

Michael Kern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6880532
    Abstract: A direct injection engine is coupled to a vacuum brake booster wherein vacuum created from engine pumping is used to supplement driver braking force. The brake booster is coupled through a check valve to the engine intake manifold. A method is disclosed for estimating pressure in the brake booster based on operating conditions. A method is also disclosed for estimating operating parameters based on measured brake booster pressure. Further, a method is disclosed for diagnosing degradation, or monitoring, a brake booster pressure sensor based on operating conditions. In addition, a method is disclosed for diagnosing degradation in other vehicle and engine sensors based on measured brake booster pressure.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: April 19, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: James Michael Kerns, John David Russell
  • Patent number: 6880533
    Abstract: A direct injection engine is coupled to a vacuum brake booster wherein vacuum created from engine pumping is used to supplement driver braking force. The brake booster is coupled through a check valve to the engine intake manifold. A method is disclosed for estimating pressure in the brake booster based on operating conditions. A method is also disclosed for estimating operating parameters based on measured brake booster pressure. Further, a method is disclosed for diagnosing degradation, or monitoring, a brake booster pressure sensor based on operating conditions. In addition, a method is disclosed for diagnosing degradation in other vehicle and engine sensors based on measured brake booster pressure.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: April 19, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: James Michael Kerns, John David Russell
  • Patent number: 6879906
    Abstract: A system and method for controlling an internal combustion engine determine a catalyst gain based on an exhaust gas sensor positioned upstream relative to a catalyst and at least one exhaust gas sensor positioned downstream relative to at least a portion of the catalyst and use the gain to determine the condition or performance of the catalyst. The gain may be determined by modeling the catalyst as an integrator with an unknown gain and estimating the gain using a polynomial approximation. The gain is compared to an expected value or threshold associated with current operating conditions, such as catalyst temperature and/or mass air flow.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: April 12, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: Imad Hassan Makki, Gopichandra Surnilla, James Michael Kerns, Stephen B. Smith
  • Patent number: 6848427
    Abstract: A system and process for determining fuel injection time scheduling in an internal combustion engine. The system and method uses a prediction of engine speed to compensate for the errors due to rapid speed change in fuel injection during crank/start and engine speed transition like engine tip-in and tip-out.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: February 1, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: Gang Song, James Michael Kerns, Stephen B. Smith
  • Publication number: 20040244364
    Abstract: A system and method for controlling an internal combustion engine for low emissions include an inner feedback control loop to control the engine fuel/air ratio with feedback provided by a first exhaust gas sensor and an outer feedback control loop that modifies a reference fuel/air ratio provided to the inner feedback control loop based on feedback signals provided by a second exhaust gas sensor positioned downstream relative to a portion of the catalyst and a third exhaust gas sensor positioned downstream relative to the second exhaust gas sensor. Catalyst gains are determined by modeling the catalyst as an integrator with an unknown gain and estimating the catalyst gain based on the exhaust gas sensors with the gain used to monitor catalyst performance and/or modify the engine fuel/air ratio.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Inventors: Imad Hassan Makki, Gopichandra Surnilla, James Michael Kerns, Stephen B. Smith
  • Publication number: 20040244363
    Abstract: A system and method for controlling an internal combustion engine for low emissions include an inner feedback control loop to control the engine fuel/air ratio with feedback provided by a first exhaust gas sensor and an outer feedback control loop that modifies the fuel/air ratio reference provided to the inner feedback control loop based on feedback signals provided by the first exhaust gas sensor and a second exhaust gas sensor. The fuel/air ratio reference signal controller adapts to the oxygen storage capacity of the catalyst by modeling the catalyst as an integrator with an unknown gain and estimating the catalyst gain based on the first and second exhaust gas sensor signals. Using the estimated catalyst gain, an adaptive controller gain factor is determined and subsequently used to determine the fuel/air ratio reference signal provided to the fuel/air ratio controller of the inner feedback control loop.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Inventors: Imad Hassan Makki, James Michael Kerns, Stephen B. Smith
  • Publication number: 20040249556
    Abstract: A system and method for controlling an internal combustion engine determine a catalyst gain based on an exhaust gas sensor positioned upstream relative to a catalyst and at least one exhaust gas sensor positioned downstream relative to at least a portion of the catalyst and use the gain to determine the condition or performance of the catalyst. The gain may be determined by modeling the catalyst as an integrator with an unknown gain and estimating the gain using a polynomial approximation. The gain is compared to an expected value or threshold associated with current operating conditions, such as catalyst temperature and/or mass air flow.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Inventors: Imad Hassan Makki, Gopichandra Surnilla, James Michael Kerns, Stephen B. Smith
  • Patent number: 6774614
    Abstract: An apparatus for detecting currents in a three-phase power transmission system includes a first detection circuit electrically coupled to a first phase of the three-phase transmission system, a second detection circuit electrically coupled to a second phase of the three-phase transmission system different than the first phase, and an event output switch electrically coupled to the first detection circuit and the second detection circuit and configured to actuate when a subsynchronous current at least one of the first phase and the second phase exceeds a pre-selected subsynchronous current setpoint.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: August 10, 2004
    Assignee: General Electric Company
    Inventors: William Herbert Sahm, III, Stanley A. Miske, Jr., Daniel Herbert Baker, Bruce Edward English, John Michael Kern
  • Patent number: 6769336
    Abstract: A clutchless wire cutting apparatus for successively cutting off leading end portions of a predetermined length of wire from a wire stock. The wire is advanced through a cutting station which includes the cutting apparatus. The cutting apparatus includes an electrical motor whose output is coupled to the cutter mechanism which performs the successive wire cuts. A proximity switch or sensor located downstream of the cutting station signals a controller each time the wire reaches the desired length to periodically generate an electrical current to the electrical motor for selectively intermittently driving the motor at a relatively high frequency corresponding to the frequency at which wire cuts are made. The motor may also be continuously driven for cutting shorter wire lengths. The motor has an output on an motor shaft which is coupled to a cutter shaft via a belt drive. The cutter shaft includes an eccentric cam which acts directly on the wire cutter.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: August 3, 2004
    Assignee: Rockford Manufacturing Group, Inc.
    Inventors: Michael Kern, Irvin Burns
  • Publication number: 20040144369
    Abstract: A system and process for determining fuel injection time scheduling in an internal combustion engine.
    Type: Application
    Filed: January 23, 2003
    Publication date: July 29, 2004
    Inventors: Gang Song, James Michael Kerns, Stephen B. Smith
  • Patent number: 6741918
    Abstract: Systems and methods for detecting degradation of a sensor in a vacuum brake booster coupled to a manifold of an internal combustion engine include measuring an engine or vehicle operating parameter to detect operating or control conditions and detecting degradation of the sensor based on the engine or vehicle operating parameter. In one embodiment the operating parameter is a measured or estimated manifold pressure. A pressure drop across a check valve disposed between the brake booster and the intake manifold may also be considered.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: May 25, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: James Michael Kerns, John D. Russell
  • Publication number: 20040088969
    Abstract: A method for rapidly heating an emission control device in an engine exhaust uses excess air added to the exhaust via an air introduction device. After an engine cold start, the engine is operated to raise exhaust manifold temperature to a first predetermined value by operating the engine with a lean air-fuel ratio and retarded ignition timing. Once the exhaust manifold reaches the predetermined temperature value, the engine is switched to operate rich and air is added via the air introduction device. The added air and rich exhaust gas burn in the exhaust, thereby generating heat and raising catalyst temperature even more rapidly. The rich operation and excess air are continued until either engine airflow increases beyond a pre-selected value, or the emission control device reaches a desired temperature value. After the emission control device reaches the desired temperature, the engine is operated substantially around stoichiometry.
    Type: Application
    Filed: October 29, 2003
    Publication date: May 13, 2004
    Inventors: Donald James Lewis, James Michael Kerns, Matthew John Gerhart, Ralph Wayne Cunningham
  • Patent number: 6732578
    Abstract: A direct injection engine is coupled to a vacuum brake booster wherein vacuum created from engine pumping is used to supplement driver braking force. The brake booster is coupled through a check valve to the engine intake manifold. A method is disclosed for estimating pressure in the brake booster based on operating conditions. A method is also disclosed for estimating operating parameters based on measured brake booster pressure. Further, a method is disclosed for diagnosing degradation, or monitoring, a brake booster pressure sensor based on operating conditions. In addition, a method is disclosed for diagnosing degradation in other vehicle and engine sensors based on measured brake booster pressure.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: May 11, 2004
    Assignee: Ford Global Technologies, LLC
    Inventor: James Michael Kerns
  • Patent number: 6715280
    Abstract: A method for rapidly heating an emission control device in an engine exhaust uses excess air added to the exhaust via an air introduction device. After an engine cold start, the engine is operated to raise exhaust manifold temperature to a first predetermined value by operating the engine with a lean air-fuel ratio and retarded ignition timing. Once the exhaust manifold reaches the predetermined temperature value, the engine is switched to operate rich and air is added via the air introduction device. The added air and rich exhaust gas burn in the exhaust, thereby generating heat and raising catalyst temperature even more rapidly. The rich operation and excess air are continued until either engine airflow increases beyond a pre-selected value, or the emission control device reaches a desired temperature value. After the emission control device reaches the desired temperature, the engine is operated substantially around stoichiometry.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: April 6, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: Donald James Lewis, James Michael Kerns, Matthew John Gerhart, Ralph Wayne Cunningham
  • Patent number: 6708591
    Abstract: A clutchless wire cutting apparatus for successively cutting off leading end portions of a predetermined length of wire from a wire stock. The wire is advanced through a cutting station which includes the cutting apparatus. The cutting apparatus includes an electrical motor whose output is coupled to the cutter mechanism which performs the successive wire cuts. A proximity switch or sensor located downstream of the cutting station signals a controller each time the wire reaches the desired length to periodically generate an electrical current to the electrical motor for selectively intermittently driving the motor at a relatively high frequency corresponding to the frequency at which wire cuts are made. The motor may also be continuously driven for cutting shorter wire lengths. The motor has an output on an motor shaft which is coupled to a cutter shaft via a belt drive. The cutter shaft includes an eccentric cam which acts directly on the wire cutter.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: March 23, 2004
    Assignee: Rockford Manufacturing Group, Inc.
    Inventors: Michael Kern, Irvin Burns
  • Publication number: 20040016417
    Abstract: A direct injection engine is coupled to a vacuum brake booster wherein vacuum created from engine pumping is used to supplement driver braking force. The brake booster is coupled through a check valve to the engine intake manifold. A method is disclosed for estimating pressure in the brake booster based on operating conditions. A method is also disclosed for estimating operating parameters based on measured brake booster pressure. Further, a method is disclosed for diagnosing degradation, or monitoring, a brake booster pressure sensor based on operating conditions. In addition, a method is disclosed for diagnosing degradation in other vehicle and engine sensors based on measured brake booster pressure.
    Type: Application
    Filed: July 28, 2003
    Publication date: January 29, 2004
    Inventors: James Michael Kerns, John David Russell
  • Publication number: 20040006973
    Abstract: A system and method for controlling an engine coupled to an emission system is provided. The system includes an emission catalyst and a HEGO sensor disposed downstream of the catalyst. The method includes adjusting an air-fuel ratio of the engine to substantially maintain an output signal from the downstream HEGO sensor within a predetermined linear operating range.
    Type: Application
    Filed: May 23, 2003
    Publication date: January 15, 2004
    Inventors: Imad Hassan Makki, James Michael Kerns
  • Publication number: 20040006972
    Abstract: A method for rapidly heating an emission control device in an engine exhaust uses excess air added to the exhaust via an air introduction device. After an engine cold start, the engine is operated to raise exhaust manifold temperature to a first predetermined value by operating the engine with a lean air-fuel ratio and retarded ignition timing. Once the exhaust manifold reaches the predetermined temperature value, the engine is switched to operate rich and air is added via the air introduction device. The added air and rich exhaust gas burn in the exhaust, thereby generating heat and raising catalyst temperature even more rapidly. The rich operation and excess air are continued until either engine airflow increases beyond a pre-selected value, or the emission control device reaches a desired temperature value. After the emission control device reaches the desired temperature, the engine is operated substantially around stoichiometry.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 15, 2004
    Applicant: Ford Global Technologies, Inc.
    Inventors: Donald James Lewis, James Michael Kerns, Matthew John Gerhart, Ralph Wayne Cunningham
  • Patent number: 6666021
    Abstract: A method for rapidly heating an emission control device in an engine exhaust uses excess air added to the exhaust via an air introduction device. After an engine cold start, the engine is operated to raise exhaust manifold temperature to a first predetermined value by operating the engine with a lean air-fuel ratio and retarded ignition timing. Once the exhaust manifold reaches the predetermined temperature value, the engine is switched to operate rich and air is added via the air introduction device. The added air and rich exhaust gas burn in the exhaust, thereby generating heat and raising catalyst temperature even more rapidly. The rich operation and excess air are continued until either engine airflow increases beyond a pre-selected value, or the emission control device reaches a desired temperature value. After the emission control device reaches the desired temperature, the engine is operated substantially around stoichiometry.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: December 23, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Donald James Lewis, James Michael Kerns, Matthew John Gerhart, Ralph Wayne Cunningham
  • Patent number: 6644291
    Abstract: A control system for controlling an engine (10) of an automotive vehicle has an air charge sensor (47) generating a first signal indicative of an air charge, a purge flow valve (74) generating a second signal indicative of purge flow. A controller (42) is coupled to the air charge sensor and the purge flow valve. The controller (42) is configured to determine a first amount of fuel to deliver to the cylinder based on the first signal and a desired air-fuel ratio. The controller is configured to calculate a first air-fuel ratio change value based on the first signal and is configured to calculate a second air-fuel ratio change value based on the second signal. The controller is configured to deliver a second amount of fuel to the cylinder based on the first amount of fuel and the first and second air-fuel ratio change values.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: November 11, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: David James Stroh, James Michael Kerns