Patents by Inventor Michael Konrad Grobis

Michael Konrad Grobis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9818440
    Abstract: According to one embodiment, a heat assisted magnetic recording system includes a magnetic recording medium comprising a magnetic recording layer, where the magnetic recording layer includes a plurality of physical bits. Each physical bit has a perpendicular magnetic anisotropy and one of at least three magnetic states, where the at least three magnetic states include a +1 magnetic state, a 0 magnetic state, and a ?1 magnetic state.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: November 14, 2017
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Pierre-Olivier Jubert, Michael Konrad Grobis, Richard Leo Galbraith, Roger William Wood
  • Patent number: 9601145
    Abstract: A heat-assisted magnetic recording (HAMR) disk has multiple independent data layers, each data layer being a continuous non-patterned layer of magnetizable material. Each data layer can store data independent and not related to the data stored in the other data layers. The data layers are separated by a nonmagnetic spacer layer (SL) and each data layer is formed of high-anisotropy (Ku) material so that the coercivities of lower and upper data layers (RL1 and RL2) are greater than the magnetic write field. At a high laser power both RL1 and RL2 are heated to above their respective Curie temperatures and data is recorded in both RL1 and RL2. At low laser power only upper RL2 is heated to above its Curie temperature and data is recorded only in RL2. The SL prevents lower RL1 from being heated to above its Curie temperature at low laser power.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: March 21, 2017
    Assignee: HGST Netherlands B.V.
    Inventors: Michael Konrad Grobis, Virat Vasav Mehta, Gregory John Parker, Hal Jervis Rosen, Bruce David Terris
  • Patent number: 9530445
    Abstract: A heat-assisted magnetic recording medium has a heat-sink layer, a chemically-ordered FePt alloy magnetic layer and a perovskite oxide intermediate layer between the heat-sink layer and the magnetic layer. The perovskite oxide intermediate layer may function as both a seed layer for the magnetic layer and a thermal barrier layer, as just a seed layer for the magnetic layer, or as just a thermal barrier layer. The intermediate layer is formed of a material selected from a ABO3 perovskite oxide (where A is selected from one or more of Ba, Sr and Ca and B is selected from one or more of Zr, Ce, Hf, Sn, Ir, and Nb), and a A2REBO6 rare earth double perovskite oxide (where RE is a rare earth element, A is selected from Ba, Sr and Ca, and B is selected from Nb and Ta).
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: December 27, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Michael Konrad Grobis, Olav Hellwig, Bruce David Terris, Sung Hun Wee
  • Patent number: 9147423
    Abstract: A method for making a bit-patterned-media magnetic recording disk with discrete magnetic islands includes annealing the data islands after they have been formed by an etching process. A hard mask, such as a layer of silicon nitride or carbon, may be first formed on the recording layer and a patterned resist formed on the hard mask. The resist pattern is then transferred into the hard mask, which is used as the etch mask to etch the recording layer and form the discrete data islands. After the data islands are formed by the etching process, the patterned recording layer is annealed. The annealing may be done in a vacuum, or in an inert gas, like helium or argon, or in a forming gas such as a reducing atmosphere of argon plus hydrogen. The annealing improves the coercivity, the effective saturation magnetization and the thermal stability of the patterned media.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 29, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Michael Konrad Grobis, Olav Hellwig, Ernesto E. Marinero, Andrew Thomas McCallum, Dieter K. Weller
  • Patent number: 8824075
    Abstract: A system and method for recording data to a perpendicular magnetic recording media having a highly ordered granular structure. The method includes the synchronization of write frequency and write phase to the granular structure of the magnetic media optimize performance of the magnetic data recording system by minimizing bit error rate.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 2, 2014
    Assignee: HSGT Netherlands B.V.
    Inventors: Michael Konrad Grobis, Manfred E. Schabes
  • Patent number: 8786972
    Abstract: A magnetic recording disk drive determines the locations of defective bits in a failed data sector, and allows for the error correction code (ECC) to correctly decode the data from the sector. After a sector has failed decoding, the digitized waveform and the read channel state from the failed sector are stored in memory. A nondata pattern is written to the failed sector and read back to determine the locations of the defective data bits in the failed sector, which are then used to update the read channel state. The data pattern from the failed sector, with the identified bit error locations, is attempted to be decoded. If the decoding is successful then the sector is marked as bad and the correctly decoded data pattern is written to a different region of the disk, for example physical sectors specifically intended for use as spare sectors.
    Type: Grant
    Filed: November 18, 2012
    Date of Patent: July 22, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Michael Konrad Grobis, Kurt Allan Rubin
  • Publication number: 20140168807
    Abstract: A system and method for recording data to a perpendicular magnetic recording media having a highly ordered granular structure. The method includes the synchronization of write frequency and write phase to the granular structure of the magnetic media optimize performance of the magnetic data recording system by minimizing bit error rate.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Michael Konrad Grobis, Manfred E. Schabes
  • Patent number: 8755142
    Abstract: A hard disk drive (HDD) has a high track misregistration (TMR) mode of writing data. If the position error signal (PES) from the servo positioning information exceeds a first write inhibit threshold (WI-1), writing is not inhibited but a high TMR mode of operation is enabled. In high TMR mode, prior to writing data to the target track, the data on the adjacent tracks is read and stored in a buffer. The data to be written to the target track is also stored in the buffer, and is flagged to indicate that the data needs to be written. The data is then written to the target track. However, if during writing the PES exceeds a second threshold (WI-2), then the data from the adjacent encroached track in the buffer is flagged for writing and the process repeated with the encroached track set as the target track.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: June 17, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Michael Konrad Grobis, Manfred Ernst Schabes
  • Patent number: 8737002
    Abstract: A magnetic recording disk has nondata regions that contain a group of first nondata islands with one area and a magnetization in one perpendicular direction, and a group of second nondata islands with a smaller area and a magnetization in the opposite direction. To magnetize the nondata islands with the proper magnetization directions, a DC magnetic field much greater than the coercive field of the magnetic recording layer is applied in one direction to the entire disk to magnetize all of the nondata islands in the same direction. Then the disk is heated to a predetermined temperature, and while the disk is at this temperature, a second DC magnetic field less than the first DC magnetic field is applied for a predetermined time in the opposite direction to the entire disk. This reverses the magnetization direction of the smaller islands without switching the magnetization of the larger islands.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: May 27, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Abhishek Dhanda, Michael Konrad Grobis, Toshiki Hirano, Tetsuo Semba
  • Publication number: 20140139942
    Abstract: A magnetic recording disk drive determines the locations of defective bits in a failed data sector, and allows for the error correction code (ECC) to correctly decode the data from the sector. After a sector has failed decoding, the digitized waveform and the read channel state from the failed sector are stored in memory. A nondata pattern is written to the failed sector and read back to determine the locations of the defective data bits in the failed sector, which are then used to update the read channel state. The data pattern from the failed sector, with the identified bit error locations, is attempted to be decoded. If the decoding is successful then the sector is marked as bad and the correctly decoded data pattern is written to a different region of the disk, for example physical sectors specifically intended for use as spare sectors.
    Type: Application
    Filed: November 18, 2012
    Publication date: May 22, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Michael Konrad Grobis, Kurt Allan Rubin
  • Patent number: 8699162
    Abstract: A shingled magnetic recording disk drive with sector error correction code (ECC) has the disk recording surface divided into multiple zones. Each zone is assigned a sector-ECC strength, i.e., a unique number of ECC sectors associated with a block of data sectors. The zone in which data is to be written is determined from the time average of the position-error signal (PES), which is an indication of the track misregistration (TMR) and thus the current environmental condition to which the HDD is subjected.
    Type: Grant
    Filed: November 18, 2012
    Date of Patent: April 15, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Michael Konrad Grobis, Manfred Ernst Schabes
  • Patent number: 8625229
    Abstract: A patterned-media magnetic recording disk drive has head positioning servo sectors on the disk that do not contain special patterns but merely use the same type of dots that are used for data. The “data” dots in angularly spaced sectors of the data tracks function as the servo sectors and are denoted as D-servo regions. The D-servo regions extend across an annular band of the disk, which may be a bootstrap band for self-servowriting. The dots in the annular band are randomly magnetized so that each track in each D-servo region provides a generally random readback signal at the data frequency. The precise radial and circumferential position of the read/write head within a D-servo region is determined by comparing the readback signal with a set of reference signal waveforms from a look-up reference table and finding the reference signal waveform that matches the readback signal.
    Type: Grant
    Filed: June 10, 2012
    Date of Patent: January 7, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Thomas R. Albrecht, Michael Konrad Grobis
  • Publication number: 20130342931
    Abstract: A hard disk drive (HDD) has a high track misregistration (TMR) mode of writing data. If the position error signal (PES) from the servo positioning information exceeds a first write inhibit threshold (WI-1), writing is not inhibited but a high TMR mode of operation is enabled. In high TMR mode, prior to writing data to the target track, the data on the adjacent tracks is read and stored in a buffer. The data to be written to the target track is also stored in the buffer, and is flagged to indicate that the data needs to be written. The data is then written to the target track. However, if during writing the PES exceeds a second threshold (WI-2), then the data from the adjacent encroached track in the buffer is flagged for writing and the process repeated with the encroached track set as the target track.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Inventors: Michael Konrad Grobis, Manfred Ernst Schabes
  • Publication number: 20130329315
    Abstract: A patterned-media magnetic recording disk drive has head positioning servo sectors on the disk that do not contain special patterns but merely use the same type of dots that are used for data. The “data” dots in angularly spaced sectors of the data tracks function as the servo sectors and are denoted as D-servo regions. The D-servo regions extend across an annular band of the disk, which may be a bootstrap band for self-servowriting. The dots in the annular band are randomly magnetized so that each track in each D-servo region provides a generally random readback signal at the data frequency. The precise radial and circumferential position of the read/write head within a D-servo region is determined by comparing the readback signal with a set of reference signal waveforms from a look-up reference table and finding the reference signal waveform that matches the readback signal.
    Type: Application
    Filed: June 10, 2012
    Publication date: December 12, 2013
    Inventors: Thomas R. Albrecht, Michael Konrad Grobis
  • Publication number: 20130270221
    Abstract: A method for making a bit-patterned-media magnetic recording disk with discrete magnetic islands includes annealing the data islands after they have been formed by an etching process. A hard mask, such as a layer of silicon nitride or carbon, may be first formed on the recording layer and a patterned resist formed on the hard mask. The resist pattern is then transferred into the hard mask, which is used as the etch mask to etch the recording layer and form the discrete data islands. After the data islands are formed by the etching process, the patterned recording layer is annealed. The annealing may be done in a vacuum, or in an inert gas, like helium or argon, or in a forming gas such as a reducing atmosphere of argon plus hydrogen. The annealing improves the coercivity, the effective saturation magnetization and the thermal stability of the patterned media.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Inventors: Michael Konrad Grobis, Olav Hellwig, Ernesto E. Marinero, Andrew Thomas McCallum, Dieter K. Weller
  • Patent number: 8514672
    Abstract: A near-field transducer (NFT) has a primary tip that concentrates the oscillating charge of the NFT onto a substrate, such as magnetic recording medium, to heat regions of the medium, and a secondary tip. The secondary tip is located close to a temperature sensor, such as an electrical conductor whose resistance varies with temperature. The temperature sensor senses heat from the secondary tip and thus properties of the substrate like surface topography and the presence or absence of metallic material. The NFT can be part of a bit-patterned media (BPM) thermally-assisted recording (TAR) disk drive. The temperature sensor output is used to control the write pulses from the disk drive's write head so the magnetic write field is synchronized with the location of the magnetic data islands.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 20, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Michael Konrad Grobis, Barry Cushing Stipe
  • Patent number: 8355300
    Abstract: A thermally-assisted recording (TAR) bit-patterned-media (BPM) magnetic recording disk drive uses optical detection of synchronization fields for write synchronization and optical detection of servo sectors for read/write head positioning. The synchronization fields and servo sectors extend generally radially across the data tracks and are patterned into discrete nondata blocks separated by gaps in the along-the-track direction. A near-field transducer (NFT) directs laser radiation to the disk and generates a power absorption profile on the disk that has a characteristic along-the-track spot size less than the along-the-track length of the gaps between the nondata blocks in the synchronization fields and servo sectors.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: January 15, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael Konrad Grobis, Manfred Ernst Schabes, Barry Cushing Stipe
  • Publication number: 20120082015
    Abstract: A thermally-assisted recording (TAR) bit-patterned-media (BPM) magnetic recording disk drive uses optical detection of synchronization fields for write synchronization and optical detection of servo sectors for read/write head positioning. The synchronization fields and servo sectors extend generally radially across the data tracks and are patterned into discrete nondata blocks separated by gaps in the along-the-track direction. A near-field transducer (NFT) directs laser radiation to the disk and generates a power absorption profile on the disk that has a characteristic along-the-track spot size less than the along-the-track length of the gaps between the nondata blocks in the synchronization fields and servo sectors.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 5, 2012
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Michael Konrad Grobis, Manfred Ernst Schabes, Barry Cushing Stipe
  • Publication number: 20120051196
    Abstract: A near-field transducer (NFT) has a primary tip that concentrates the oscillating charge of the NFT onto a substrate, such as magnetic recording medium, to heat regions of the medium, and a secondary tip. The secondary tip is located close to a temperature sensor, such as an electrical conductor whose resistance varies with temperature. The temperature sensor senses heat from the secondary tip and thus properties of the substrate like surface topography and the presence or absence of metallic material. The NFT can be part of a bit-patterned media (BPM) thermally-assisted recording (TAR) disk drive. The temperature sensor output is used to control the write pulses from the disk drive's write head so the magnetic write field is synchronized with the location of the magnetic data islands.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Michael Konrad Grobis, Barry Cushing Stipe
  • Patent number: 8081542
    Abstract: A thermally-assisted recording (TAR) patterned-media magnetic recording disk drive has a perpendicular patterned-media disk with multilevel data islands and a laser capable of supplying multiple levels of output power to a near-field transducer (NFT). If there are only two cells in each island, each island is formed of an upper cell of magnetic material with a coercivity HC1 and a Curie temperature TC1, a lower cell of magnetic material with a coercivity HC2 and a Curie temperature TC2 greater than TC1, and a nonmagnetic spacer layer between the two cells. Each cell is formed of high-anisotropy material so as to have an anisotropy field greater than the magnetic write field. The TAR laser is capable of supplying at least two levels of output power to the NFT to allow the islands to be heated to two distinct temperatures so that the two cells in an island can be written so as to have either the same or opposite magnetizations.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 20, 2011
    Assignee: Hitachi Global Technologies Netherlands B.V.
    Inventors: Michael Konrad Grobis, Barry Cushing Stipe, Dieter K. Weller, Gabriel Zeltzer