Patents by Inventor Michael P. Chudzik

Michael P. Chudzik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8518766
    Abstract: A field effect transistor (FET) includes a body region and a source region disposed at least partially in the body region. The FET also includes a drain region disposed at least partially in the body region and a molybdenum oxynitride (MoNO) gate. The FET also includes a dielectric having a high dielectric constant (k) disposed between the body region and the MoNO gate.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Michael P. Chudzik, Matthew W. Copel, Supratik Guha, Richard A. Haight, Vijay Narayanan, Martin P. O'Boyle, Vamsi K. Paruchuri
  • Patent number: 8507992
    Abstract: A method of forming a semiconductor device is provided that includes forming a Ge-containing layer atop a p-type device regions of the substrate. Thereafter, a first dielectric layer is formed in a second portion of a substrate, and a second dielectric layer is formed overlying the first dielectric layer in the second portion of the substrate and overlying a first portion of the substrate. Gate structures may then formed atop the p-type device regions and n-type device regions of the substrate, in which the gate structures to the n-type device regions include a rare earth metal.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 13, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renee T. Mo, Huiming Bu, Michael P. Chudzik, William K. Henson, Mukesh V. Khare, Vijay Narayanan
  • Patent number: 8492290
    Abstract: A method of fabricating a silicon-containing oxide layer that includes providing a chemical oxide layer on a surface of a semiconductor substrate, removing the chemical oxide layer in an oxygen-free environment at a temperature of 1000° C. or greater to provide a bare surface of the semiconductor substrate, and introducing an oxygen-containing gas at a flow rate to the bare surface of the semiconductor substrate for a first time period at the temperature of 1000° C. The temperature is then reduced to room temperature during a second time period while maintaining the flow rate of the oxygen containing gas to provide a silicon-containing oxide layer having a thickness ranging from 0.5 ? to 10 ?.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: July 23, 2013
    Assignees: International Business Machines Corporation, Globalfoundries Inc.
    Inventors: Michael P. Chudzik, Min Dai, Joseph F. Shepard, Jr., Shahab Siddiqui, Jinping Liu
  • Publication number: 20130175665
    Abstract: A trench structure that in one embodiment includes a trench present in a substrate, and a dielectric layer that is continuously present on the sidewalls and base of the trench. The dielectric layer has a dielectric constant that is greater than 30. The dielectric layer is composed of tetragonal phase hafnium oxide with silicon present in the grain boundaries of the tetragonal phase hafnium oxide in an amount ranging from 3 wt. % to 20 wt. %.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 11, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Chudzik, Bachir Dirahoui, Rishikesh Krishnan, Siddarth A. Krishnan, Oh-jung Kwon, Paul C. Parries, Hongwen Yan
  • Publication number: 20130168780
    Abstract: Oxygen scavenging material embedded in an isolation structure provides improved protection of high dielectric constant (Hi-K) materials from oxygen contamination while avoiding alteration of work function and switching threshold shift in transistors including such Hi-K materials.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 4, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christopher Vincent Baiocco, Michael P. Chudzik, Deleep R. Nair, Jay M. Shah
  • Publication number: 20130126986
    Abstract: A semiconductor device including a germanium containing substrate including a gate structure on a channel region of the semiconductor substrate. The gate structure may include a silicon oxide layer that is in direct contact with an upper surface of the germanium containing substrate, at least one high-k gate dielectric layer in direct contact with the silicon oxide layer, and at least one gate conductor in direct contact with the high-k gate dielectric layer. The interface between the silicon oxide layer and the upper surface of the germanium containing substrate is substantially free of germanium oxide. A source region and a drain region may be present on opposing sides of the channel region.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: MaryJane Brodsky, Murshed M. Chowdhury, Michael P. Chudzik, Min Dai, Siddarth A. Krishnan, Shreesh Narasimha, Shahab Siddiqui
  • Patent number: 8440547
    Abstract: Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ashima B. Chakravarti, Michael P. Chudzik, Judson R. Holt, Dominic J. Schepis
  • Patent number: 8436427
    Abstract: The present invention, in one embodiment, provides a method of forming a semiconductor device that includes providing a substrate including a first conductivity type region and a second conductivity type region; forming a gate stack including a gate dielectric atop the first conductivity type region and the second conductivity type region of the substrate and a first metal gate conductor overlying the high-k gate dielectric; removing a portion of the first metal gate conductor that is present in the first conductivity type region to expose the gate dielectric present in the first conductivity type region; applying a nitrogen based plasma to the substrate, wherein the nitrogen based plasma nitrides the gate dielectric that is present in the first conductivity type region and nitrides the first metal gate conductor that is present in the second conductivity type region; and forming a second metal gate conductor overlying at least the gate dielectric that is present in the first conductivity type region.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Wiliam K. Henson, Rashmi Jha, Yue Liang, Ravikumar Ramachandran, Richard S. Wise
  • Publication number: 20130105879
    Abstract: A high dielectric constant (high-k) gate dielectric for a field effect transistor (FET) and a high-k tunnel dielectric for a non-volatile random access memory (NVRAM) device are simultaneously formed on a semiconductor substrate. A stack of at least one conductive material layer, a control gate dielectric layer, and a disposable material layer is subsequently deposited and lithographically patterned. A planarization dielectric layer is deposited and patterned, and disposable material portions are removed. A remaining portion of the control gate dielectric layer is preserved in the NVRAM device region, but is removed in the FET region. A conductive material is deposited in gate cavities to provide a control gate for the NVRAM device and a gate portion for the FET. Alternately, the control gate dielectric layer may replaced with a high-k control gate dielectric in the NVRAM device region.
    Type: Application
    Filed: December 15, 2011
    Publication date: May 2, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Breil, Michael P. Chudzik, Rishikesh Krishnan, Siddarth A. Krishnan, Unoh Kwon
  • Patent number: 8420473
    Abstract: A method of simultaneously fabricating n-type and p type field effect transistors can include forming a first replacement gate having a first gate metal layer adjacent a gate dielectric layer in a first opening in a dielectric region overlying a first active semiconductor region. A second replacement gate including a second gate metal layer can be formed adjacent a gate dielectric layer in a second opening in a dielectric region overlying a second active semiconductor region. At least portions of the first and second gate metal layers can be stacked in a direction of their thicknesses and separated from each other by at least a barrier metal layer. The NFET resulting from the method can include the first active semiconductor region, the source/drain regions therein and the first replacement gate, and the PFET resulting from the method can include the second active semiconductor region, source/drain regions therein and the second replacement gate.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Michael P. Chudzik, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan
  • Publication number: 20130082332
    Abstract: Semiconductor devices with replacement gate electrodes are formed with different materials in the work function layers. Embodiments include forming first and second removable gates on a substrate, forming first and second pairs of spacers on opposite sides of the first and second removable gates, respectively, forming a hardmask layer over the second removable gate, removing the first removable gate, forming a first cavity between the first pair of spacers, forming a first work function material in the first cavity, removing the hardmask layer and the second removable gate, forming a second cavity between the second pair of spacers, and forming a second work function material, different from the first work function material, in the second cavity.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicants: Samsung Electronics Co., Ltd., International Business Machines Corporation
    Inventors: Jinping Liu, Min Dai, Ju Youn Kim, Michael P. Chudzik, Jedon Kim, Sungkee Han
  • Publication number: 20130082337
    Abstract: At least one layer including a scavenging material and a dielectric material is deposited over a gate stack, and is subsequently anisotropically etched to form a oxygen-scavenging-material-including gate spacer. The oxygen-scavenging-material-including gate spacer can be a scavenging-nanoparticle-including gate spacer or a scavenging-island-including gate spacer. The scavenging material is distributed within the oxygen-scavenging-material-including gate spacer in a manner that prevents an electrical short between a gate electrode and a semiconductor material underlying a gate dielectric. The scavenging material actively scavenges oxygen that diffuses toward the gate dielectric from above, or from the outside of, a dielectric gate spacer that can be formed around the oxygen-scavenging-material-including gate spacer.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 4, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Chudzik, Deleep R. Nair, Vijay Narayanan, Carl J. Radens, Jay M. Shah
  • Publication number: 20130062677
    Abstract: A memory device, and a method of forming a memory device, is provided that includes a capacitor with a lower electrode of a metal semiconductor alloy. In one embodiment, the memory device includes a trench present in a semiconductor substrate including a semiconductor on insulating (SOI) layer on top of a buried dielectric layer, wherein the buried dielectric layer is on top of a base semiconductor layer. A capacitor is present in the trench, wherein the capacitor includes a lower electrode of a metal semiconductor alloy having an upper edge that is self-aligned to the upper surface of the base semiconductor layer, a high-k dielectric node layer, and an upper electrode of a metal. The memory device further includes a pass transistor in electrical communication with the capacitor.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhengwen Li, Damon B. Farmer, Michael P. Chudzik, Keith Kwong Hon Wong, Jian Yu, Zhen Zhang, Chengwen Pei
  • Patent number: 8383483
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits that each contains at least a first and a second gate stacks. The first gate stack is located over a first device region (e.g., an n-FET device region) in a semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer, a metallic gate conductor, and a silicon-containing gate conductor. The second gate stack is located over a second device region (e.g., a p-FET device region) in the semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer and a silicon-containing gate conductor. The first and second gate stacks can be formed over the semiconductor substrate in an integrated manner by various methods of the present invention.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Glenn A. Biery, Alessandro C. Callegari, Tze-Chiang Chen, Michael P. Chudzik, Bruce B. Doris, Michael A. Gribelyuk, Young-Hee Kim, Barry P. Linder, Vijay Narayanan, Joseph S. Newbury, Vamsi K. Paruchuri, Michelle L. Steen
  • Patent number: 8373239
    Abstract: The present disclosure provides a method for forming a semiconductor device that includes forming a replacement gate structure overlying a channel region of a substrate. A mandrel dielectric layer is formed overlying source and drain regions of the substrate. The replacement gate structure is removed to provide an opening exposing the channel region of the substrate. A functional gate structure is formed over the channel region including a work function metal layer. A protective cap structure is formed over the functional gate structure. At least one via is etched through the mandrel dielectric layer selective to the protective cap structure to expose a portion of at least one of the source region and the drain region. A conductive fill is then formed in the vias to provide a contact to the at least one of the source region and the drain region.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Shahab Siddiqui, Michael P. Chudzik, Carl J. Radens
  • Patent number: 8354309
    Abstract: Multiple types of gate stacks are formed on a doped semiconductor well. A high dielectric constant (high-k) gate dielectric is formed on the doped semiconductor well. A metal gate layer is formed in one device area, while the high-k gate dielectric is exposed in other device areas. Threshold voltage adjustment oxide layers having different thicknesses are formed in the other device areas. A conductive gate material layer is then formed over the threshold voltage adjustment oxide layers. One type of field effect transistors includes a gate dielectric including a high-k gate dielectric portion. Other types of field effect transistors include a gate dielectric including a high-k gate dielectric portion and a first threshold voltage adjustment oxide portions having different thicknesses. Field effect transistors having different threshold voltages are provided by employing different gate dielectric stacks and doped semiconductor wells having the same dopant concentration.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Michael P. Chudzik, Shu-Jen Han, William K. Henson, Yue Liang, Edward P. Maciejewski, Myung-Hee Na, Edward J. Nowak, Xiaojun Yu
  • Patent number: 8350341
    Abstract: Adjustment of a switching threshold of a field effect transistor including a gate structure including a Hi-K gate dielectric and a metal gate is achieved and switching thresholds coordinated between NFETs and PFETs by providing fixed charge materials in a thin interfacial layer adjacent to the conduction channel of the transistor that is provided for adhesion of the Hi-K material, preferably hafnium oxide or HfSiON, depending on design, to semiconductor material rather than diffusing fixed charge material into the Hi-K material after it has been applied. The greater proximity of the fixed charge material to the conduction channel of the transistor increases the effectiveness of fixed charge material to adjust the threshold due to the work function of the metal gate, particularly where the same metal or alloy is used for both NFETs and PFETs in an integrated circuit; preventing the thresholds from being properly coordinated.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: January 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, William K. Henson, Unoh Kwon
  • Publication number: 20120329230
    Abstract: A method of fabricating a silicon-containing oxide layer that includes providing a chemical oxide layer on a surface of a semiconductor substrate, removing the chemical oxide layer in an oxygen-free environment at a temperature of 1000° C. or greater to provide a bare surface of the semiconductor substrate, and introducing an oxygen-containing gas at a flow rate to the bare surface of the semiconductor substrate for a first time period at the temperature of 1000° C. The temperature is then reduced to room temperature during a second time period while maintaining the flow rate of the oxygen containing gas to provide a silicon-containing oxide layer having a thickness ranging from 0.5 ? to 10 ?.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Chudzik, Min Dai, Joseph F. Shepard, JR., Shahab Siddiqui, Jinping Liu
  • Patent number: 8318565
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: November 27, 2012
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Publication number: 20120286374
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Applicant: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle