Patents by Inventor Michael Paleologou

Michael Paleologou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802183
    Abstract: The present relates to a process for the depolymerization of lignin using chemicals recoverable by the soda or kraft mill recovery cycles. The process involves the use of sodium hydroxide or white liquor to depolymerize lignin in black liquor or other lignins (e.g. hydrolysis lignin, kraft lignin) by conducting the reaction at 170-250° C. for up to 3 hours in the presence or absence of a co-solvent and a capping agent. The depolymerized lignin is then obtained by acidifying the reaction products to a low pH to precipitate the de-polymerized lignin, followed by particle coagulation, cake filtration and washing with acid and water to obtain a purified depolymerized lignin product.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 31, 2023
    Assignee: FPInnovations
    Inventors: Michael Paleologou, Zaid Ahmad, Chunbao Xu
  • Patent number: 11401252
    Abstract: The present invention relates to a method of producing furfural and extracting lignin from a hemi-cellulosic biomass solution comprising a total quantity of C5 sugars, comprising the steps of heating the hemi-cellulosic biomass solution to a temperature of at least about 200° C.; acidifying the hemi-cellulosic biomass solution with acid to produce the furfural in vapor phase; and condensing the furfural to recover furfural in solution, wherein the furfural is produced at a total molar yield of at least 70% of moles of furfural produced/the total moles C5 sugars present in the initial hemi-cellulosic biomass solution. Low molecular weight lignin can also be recovered from the hemi-cellulosic biomass solution prior to furfural production by membrane concentration, acidification, coagulation and filtration.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 2, 2022
    Assignee: FPInnovations
    Inventors: Naceur Jemaa, Adil Mazar, Waleed Wafa Al Dajani, Michael Paleologou
  • Patent number: 11220446
    Abstract: An acidic water-based process was developed for the synthesis of anionic lignin copolymers with adjustable MW, thermal stability and solubility in water. The anionic lignin copolymer described herein comprises: a molecular weight of 5,000 to 7.4×105 g/mol; and a charge density of ?1 to ?7.2 meq/g. The anionic lignin copolymers described herein which have a molecular weight range of 000-50,000 g/mol can be used as dispersants of negatively charged molecules or particles in numerous process or wastewater streams (e.g. concrete admixtures, gypsum slurries, textile dye) while such copolymers in a molecular weight range of 90,000-740,000 g/mole can be used as flocculants of positively charged molecules or particles in numerous process and wastewater streams including industrial and municipal systems and sludge dewatering in the textile dye, pulp & paper, mining and oil industries.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: January 11, 2022
    Assignee: FPInnovations
    Inventors: Pedram Fatehi, Fangong Kong, Shoujuan Wang, Jacquelyn Price, Michael Paleologou
  • Publication number: 20210362367
    Abstract: It is provided a process to modify lignocellulosic materials with lignin, and incorporating lignin and isocyanates or other wood adhesive in wood products compositions, and their composition, preparation and application for bonding wood products are disclosed. The compositions comprise lignin, derived from a variety of natural resources, isocyanate compounds containing two or more isocyanate functional groups, or other wood adhesives.
    Type: Application
    Filed: October 2, 2018
    Publication date: November 25, 2021
    Inventors: Martin W. FENG, Lamfeddal KOUISNI, Michael PALEOLOGOU, Simon PARADIS-BOIES, Stéphan RAYMOND, Yaolin ZHANG, Zeen HUANG
  • Publication number: 20210198434
    Abstract: A water-based process was developed for the synthesis of aminated lignin copolymers with high MW, thermal stability and solubility in water over a wide range of p H values. The cationic lignin copolymer described herein comprises: a grafting ratio of (weight of cationic amine compound)/(weight of lignin) of 70 to 200% and a charge density of +1.4-3.0 meq/g. This cationic lignin copolymer can be used as a flocculant in numerous wastewater streams including municipal and industrial systems and sludge dewatering in the pulp & paper, mining and oil industries.
    Type: Application
    Filed: March 7, 2018
    Publication date: July 1, 2021
    Applicants: FPInnovations, LAKEHEAD UNIVERSITY
    Inventors: Pedram FATEHI, Shoujuan WANG, Jacquelyn PRICE, Naceur JEMAA, Talat MAHMOOD, Michael PALEOLOGOU
  • Publication number: 20210040273
    Abstract: Novel meltable lignin compositions having tailored compatibilities, moisture/water-resistant adhesion characteristics, and low to medium glass transition temperatures (30 to 120° C.) desirable for applications in the manufacturing of various products and the integration in the formulations of adhesives, coatings, plastics, composites and masterbatches, are obtained by blending at low temperatures (0-120° C.) dry lignins (0 to 10% moisture), in their hydrogen or protonated forms—hereby referred to as H-forms (pH=2.3-6.5 for a 10% aqueous suspension), with a reactive and/or interactive molecule or combination of molecules.
    Type: Application
    Filed: February 7, 2019
    Publication date: February 11, 2021
    Inventors: Makhlouf LALEG, Naceur JEMAA, Waleed WAFA AL DAJANI, Yaolin ZHANG, Michael PALEOLOGOU
  • Patent number: 10858554
    Abstract: Most processes currently being proposed and/or used for the production of lignin from kraft or soda black liquors are capable of producing two main types of lignin: high residual content (HRC) lignin and low residual content (LRC) lignin. Surprisingly, it was discovered that HRC lignin, is a suitable ingredient in alkaline adhesives, particularly wood adhesives of the phenolic type (e.g. resole resins). This biomaterial is environmentally green and remarkably low cost, which makes it an industrially viable material to be used as a novel and major ingredient in phenolic adhesives for the manufacture of exterior grade plywood, laminated veneer lumber, oriented strand board (OSB) and other wood products—this was successfully demonstrated in a number of laboratory experiments as well as several different mill trials. The composition, preparation and application of such wood adhesives are hereby disclosed.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: December 8, 2020
    Assignee: FPInnovations
    Inventors: Martin W. Feng, Guangbo He, Yaolin Zhang, Xiang-Ming Wang, Lamfeddal Kouisni, Michael Paleologou
  • Publication number: 20200325111
    Abstract: The present invention relates to a method of producing furfural and extracting lignin from a hemi-cellulosic biomass solution comprising a total quantity of C5 sugars, comprising the steps of heating the hemi-cellulosic biomass solution to a temperature of at least about 200° C.; acidifying the hemi-cellulosic biomass solution with acid to produce the furfural in vapor phase; and condensing the furfural to recover furfural in solution, wherein the furfural is produced at a total molar yield of at least 70% of moles of furfural produced/the total moles C5 sugars present in the initial hemi-cellulosic biomass solution. Low molecular weight lignin can also be recovered from the hemi-cellulosic biomass solution prior to furfural production by membrane concentration, acidification, coagulation and filtration.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 15, 2020
    Applicant: FPInnovations
    Inventors: Naceur JEMAA, Adil MAZAR, Waleed WAFA AL DAJANI, Michael PALEOLOGOU
  • Publication number: 20200148835
    Abstract: The present relates to a process for the depolymerization of lignin using chemicals recoverable by the soda or kraft mill recovery cycles. The process involves the use of sodium hydroxide or white liquor to depolymerize lignin in black liquor or other lignins (e.g. hydrolysis lignin, kraft lignin) by conducting the reaction at 170-250° C. for up to 3 hours in the presence or absence of a co-solvent and a capping agent. The depolymerized lignin is then obtained by acidifying the reaction products to a low pH to precipitate the de-polymerized lignin, followed by particle coagulation, cake filtration and washing with acid and water to obtain a purified depolymerized lignin product.
    Type: Application
    Filed: May 8, 2018
    Publication date: May 14, 2020
    Applicant: FPInnovations
    Inventors: Michael PALEOLOGOU, Zaid AHMAD, Chunbao XU
  • Publication number: 20200040143
    Abstract: An acidic water-based process was developed for the synthesis of anionic lignin copolymers with adjustable MW, thermal stability and solubility in water. The anionic lignin copolymer described herein comprises: a molecular weight of 5,000 to 7.4×105 g/mol; and a charge density of ?1 to ?7.2 meq/g. The anionic lignin copolymers described herein which have a molecular weight range of 000-50,000 g/mol can be used as dispersants of negatively charged molecules or particles in numerous process or wastewater streams (e.g. concrete admixtures, gypsum slurries, textile dye) while such copolymers in a molecular weight range of 90,000-740,000 g/mole can be used as flocculants of positively charged molecules or particles in numerous process and wastewater streams including industrial and municipal systems and sludge dewatering in the textile dye, pulp & paper, mining and oil industries.
    Type: Application
    Filed: March 7, 2018
    Publication date: February 6, 2020
    Applicants: FPInnovations, LAKEHEAD UNIVERSITY
    Inventors: Pedram FATEHI, Fangong KONG, Shoujuan WANG, Jacquelyn PRICE, Michael PALEOLOGOU
  • Publication number: 20190169421
    Abstract: The present describes wood adhesives reinforced with cellulose nanocrystals (CNC), in liquid and powder forms in which resin system are a phenol-formaldehyde polymer and/or lignin-phenol-formaldehyde polymer and polymeric methylene diphenyl diisocyanate (pMDI), and a method of making this polymer in liquid and powder from and the composite products that can be produced therefrom.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Applicant: FPInnovations
    Inventors: Yaolin ZHANG, Lamfeddal KOUISNI, Xiang-Ming WANG, Michael PALEOLOGOU, Martin W. FENG, Gilles BRUNETTE, Guangbo HE, Hui WAN, Ayse ALEMDAR-THOMSON
  • Patent number: 10087291
    Abstract: The present relates to a process for incorporating of wet natural fiber and starch into thermoplastics and the composite produced. The process for producing the composite comprises steps of: providing a wet natural fiber; providing a starch; providing a plasticizer; providing a thermoplastic; mixing the wet natural fiber, the starch and the plasticizer with water to produce a paste, and compounding the paste with the thermoplastic to produce the composite. The composite in a preferred embodiment comprises 50 weight % natural fiber/starch and a plasticizer; 50 weight % thermoplastic; a tensile modulus greater than 1450 MPa and a tensile strength greater than 41 MPa.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: October 2, 2018
    Assignee: FPInnovations
    Inventors: Zhirun Yuan, Michael Paleologou, Qingkai Meng, Changbin Mao, Yunli Fang
  • Patent number: 9945000
    Abstract: Acid hydrolysis of biomass is an important step for releasing the component sugars before converting them to fuels and/or biochemicals. During such a process, a significant amount of mineral acid, such as sulfuric acid, is used. In most cases, the residual acid is neutralized with lime before the sugar conversion step. By doing so, a waste calcium sulphate stream is generated and sent to disposal. The efficient separation of acid from the sugars would allow the recycle of the acid and make the entire process more economically viable. We found that a resin bed packed with an acid retardation resin can be used to achieve an efficient separation (i.e. 98.5% recovery of the acid) of the sulfuric acid from the sugars. The resin bed can be simply regenerated with water.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: April 17, 2018
    Assignee: FPINNOVATIONS
    Inventors: Naceur Jemaa, Michael Paleologou, Talat Mahmood
  • Publication number: 20170204229
    Abstract: The present relates to a process for incorporating of wet natural fiber and starch into thermoplastics and the composite produced. The process for producing the composite comprises steps of: providing a wet natural fiber; providing a starch; providing a plasticizer; providing a thermoplastic; mixing the wet natural fiber, the starch and the plasticizer with water to produce a paste, and compounding the paste with the thermoplastic to produce the composite. The composite in a preferred embodiment comprises 50 weight % natural fiber/starch and a plasticizer; 50 weight % thermoplastic; a tensile modulus greater than 1450 MPa and a tensile strength greater than 41 MPa.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 20, 2017
    Inventors: Zhirun YUAN, Michael PALEOLOGOU, Qingkai MENG, Changbin MAO, Yunli FANG
  • Publication number: 20160312317
    Abstract: Acid hydrolysis of biomass is an important step for releasing the component sugars before converting them to fuels and/or biochemicals. During such a process, a significant amount of mineral acid, such as sulfuric acid, is used. In most cases, the residual acid is neutralized with lime before the sugar conversion step. By doing so, a waste calcium sulphate stream is generated and sent to disposal. The efficient separation of acid from the sugars would allow the recycle of the acid and make the entire process more economically viable. We found that a resin bed packed with an acid retardation resin can be used to achieve an efficient separation (i.e. 98.5% recovery of the acid) of the sulfuric acid from the sugars. The resin bed can be simply regenerated with water.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 27, 2016
    Inventors: Naceur JEMAA, Michael PALEOLOGOU, Talat MAHMOOD
  • Publication number: 20160304757
    Abstract: Most processes currently being proposed and/or used for the production of lignin from kraft or soda black liquors are capable of producing two main types of lignin: high residual content (HRC) lignin and low residual content (LRC) lignin. Surprisingly, it was discovered that HRC lignin, is a suitable ingredient in alkaline adhesives, particularly wood adhesives of the phenolic type (e.g. resole resins). This biomaterial is environmentally green and remarkably low cost, which makes it an industrially viable material to be used as a novel and major ingredient in phenolic adhesives for the manufacture of exterior grade plywood, laminated veneer lumber, oriented strand board (OSB) and other wood products—this was successfully demonstrated in a number of laboratory experiments as well as several different mill trials. The composition, preparation and application of such wood adhesives are hereby disclosed.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 20, 2016
    Inventors: Martin W. FENG, Guangbo HE, Yaolin ZHANG, Xiang-Ming WANG, Lamfeddal KOUISNI, Michael PALEOLOGOU
  • Patent number: 9394220
    Abstract: The present invention describes a process and system of producing methanol from methanol condensates. In a preferred embodiment the condensates are biomethanol condensates from chemical pulp mills and various waste sources used to produce a purified biomethanol. Pulp condensates are rich in methanol and contain many other contaminants. Presently, most chemical pulp mills, such as Kraft pulp mills use steam stripping to remove and concentrate the methanol and burn the methanol onsite along with the contaminants. A combination of treatments that include air stripping, steam stripping, distillation and reverse osmosis is described to obtain purified biomethanol suitable for sale or use on site.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 19, 2016
    Assignee: FPINNOVATIONS
    Inventors: Naceur Jemaa, Michael Paleologou
  • Publication number: 20160122267
    Abstract: The present invention describes a process and system of producing methanol from methanol condensates. In a preferred embodiment the condensates are biomethanol condensates from chemical pulp mills and various waste sources used to produce a purified biomethanol. Pulp condensates are rich in methanol and contain many other contaminants. Presently, most chemical pulp mills, such as Kraft pulp mills use steam stripping to remove and concentrate the methanol and burn the methanol onsite along with the contaminants. A combination of treatments that include air stripping, steam stripping, distillation and reverse osmosis is described to obtain purified biomethanol suitable for sale or use on site.
    Type: Application
    Filed: June 16, 2014
    Publication date: May 5, 2016
    Inventors: Naceur JEMAA, Michael PALEOLOGOU
  • Publication number: 20160002462
    Abstract: The present describes wood adhesives reinforced with cellulose nanocrystals (CNC), in liquid and powder forms in which resin system are a phenol-formaldehyde polymer and/or lignin-phenol-formaldehyde polymer and polymeric methylene diphenyl diisocyanate (pMDI), and a method of making this polymer in liquid and powder from and the composite products that can be produced therefrom.
    Type: Application
    Filed: February 14, 2014
    Publication date: January 7, 2016
    Applicant: FPINNOVATIONS
    Inventors: Yaolin ZHANG, Lamfeddal KOUISNI, Xiang-Ming WANG, Michael PALEOLOGOU, Martin W. FENG, Gilles BRUNETTE, Guangbo HE, Hui WAN, Ayse ALEMDAR-THOMSON
  • Patent number: 9091023
    Abstract: A method was developed for: a) improving the filterability of acid-precipitated lignin from kraft black liquors, b) increasing the dry solids content of the final lignin product, c) reducing the acid requirements and d) minimizing or eliminating TRS emissions during the acidification of black liquor to produce lignin and/or the subsequent suspension of the lignin in acid and/or the washing of the lignin with acid. No major difference in the chemical composition, MWD and main functional groups was found in the lignin of the present invention compared with lignins produced by conventional methods.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: July 28, 2015
    Assignee: FPINNOVATIONS
    Inventors: Lamfeddal Kouisni, Michael Paleologou