Patents by Inventor Michael Perrott

Michael Perrott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210091785
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventor: Michael Perrott
  • Patent number: 10948515
    Abstract: A device may include a sensor, a sampling unit, and an interpolator. The sensor may be configured to sense motion and output a sensed signal. The sampling unit may be configured to sample the sensed signal with a sensor clocking signal to generate a plurality of sampled values. The interpolator may be coupled to the sampling unit and may be configured to receive the plurality of sampled values, the sensor clocking signal, and a reference clocking signal external to the device. The interpolator may be configured to interpolate the plurality of sampled values based on the reference clocking signal and further based on the sensor clocking signal to generate a plurality of output values.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: March 16, 2021
    Assignee: InvenSease, Inc.
    Inventors: Sriraman Dakshinamurthy, Michael Perrott, Amaresh Malipatil, William Kerry Keal, Andy F. Milota
  • Publication number: 20210044302
    Abstract: Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventor: Michael Perrott
  • Patent number: 10892772
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 12, 2021
    Assignee: INVENSENSE, INC.
    Inventor: Michael Perrott
  • Patent number: 10852135
    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: December 1, 2020
    Assignee: InvenSense, Inc.
    Inventors: Alireza Shirvani, Michael Perrott
  • Patent number: 10855308
    Abstract: Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: December 1, 2020
    Assignee: INVENSENSE, INC.
    Inventor: Michael Perrott
  • Publication number: 20200358416
    Abstract: Exemplary multipath digital microphones described herein can comprise exemplary embodiments of automatic gain control and multipath digital audio signal digital signal processing chains, which allow low power and die size to be achieved as described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can facilitate switching between multipath digital audio signal digital signal processing chains while minimizing audible artifacts associated with either the change in the gain automatic gain control amplifiers switching between multipath digital audio signal digital signal processing chains.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: Igor Mucha, Michael Perrott
  • Patent number: 10727798
    Abstract: Exemplary multipath digital microphones described herein can comprise exemplary embodiments of automatic gain control and multipath digital audio signal digital signal processing chains, which allow low power and die size to be achieved as described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can facilitate switching between multipath digital audio signal digital signal processing chains while minimizing audible artifacts associated with either the change in the gain automatic gain control amplifiers switching between multipath digital audio signal digital signal processing chains.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: July 28, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Igor Mucha, Michael Perrott
  • Publication number: 20200162099
    Abstract: Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 21, 2020
    Inventor: Michael Perrott
  • Patent number: 10578572
    Abstract: A gas sensor device with temperature uniformity is presented herein. In an implementation, a device includes a complementary metal-oxide semiconductor (CMOS) substrate layer, a dielectric layer and a gas sensing layer. The dielectric layer is deposited on the CMOS substrate layer. Furthermore, the dielectric layer includes a temperature sensor and a heating element coupled to a heat transfer layer associated with a set of metal interconnections. The gas sensing layer is deposited on the dielectric layer.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: March 3, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Fang Liu, Jim Salvia, Zhineng Zhu, Michael Perrott
  • Publication number: 20200059214
    Abstract: Exemplary multipath digital microphones described herein can comprise exemplary embodiments of automatic gain control and multipath digital audio signal digital signal processing chains, which allow low power and die size to be achieved as described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can facilitate switching between multipath digital audio signal digital signal processing chains while minimizing audible artifacts associated with either the change in the gain automatic gain control amplifiers switching between multipath digital audio signal digital signal processing chains.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 20, 2020
    Inventors: Michael Perrott, Igor Mucha
  • Publication number: 20200059241
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 20, 2020
    Inventor: Michael Perrott
  • Publication number: 20190339077
    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Alireza SHIRVANI, Michael PERROTT
  • Patent number: 10393522
    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: August 27, 2019
    Assignee: InvenSense, Inc.
    Inventors: Alireza Shirvani, Michael Perrott
  • Publication number: 20180164125
    Abstract: A device may include a sensor, a sampling unit, and an interpolator. The sensor may be configured to sense motion and output a sensed signal. The sampling unit may be configured to sample the sensed signal with a sensor clocking signal to generate a plurality of sampled values. The interpolator may be coupled to the sampling unit and may be configured to receive the plurality of sampled values, the sensor clocking signal, and a reference clocking signal external to the device. The interpolator may be configured to interpolate the plurality of sampled values based on the reference clocking signal and further based on the sensor clocking signal to generate a plurality of output values.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 14, 2018
    Inventors: Sriraman Dakshinamurthy, Michael Perrott, Amaresh Malipatil, William Kerry Keal, Andy F. Milota
  • Publication number: 20180017385
    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.
    Type: Application
    Filed: September 14, 2016
    Publication date: January 18, 2018
    Inventors: Alireza Shirvani, Michael Perrott
  • Publication number: 20170205368
    Abstract: A gas sensor device with temperature uniformity is presented herein. In an implementation, a device includes a complementary metal-oxide semiconductor (CMOS) substrate layer, a dielectric layer and a gas sensing layer. The dielectric layer is deposited on the CMOS substrate layer. Furthermore, the dielectric layer includes a temperature sensor and a heating element coupled to a heat transfer layer associated with a set of metal interconnections. The gas sensing layer is deposited on the dielectric layer.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 20, 2017
    Inventors: Fang Liu, Jim Salvia, Zhineng Zhu, Michael Perrott
  • Patent number: 8138843
    Abstract: Described is a compact, lower power gated ring oscillator time-to-digital converter that achieves first order noise shaping of quantization noise using a digital implementation. The gated ring oscillator time-to-digital converter includes a plurality of delay stages configured to enable propagation of a transitioning signal through the delay stages during an enabled state and configured to inhibit propagation of the transitioning signal through the delay stages during a disabled state. Delay stages are interconnected to allow sustained transitions to propagate through the delay stages during the enabled state and to preserve a state of the gated ring oscillator time-to-digital converter during the disabled state. The state represents a time resolution that is finer than the delay of at least one of the delay stages. A measurement module determines the number of transitions of the delay stages.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: March 20, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew Straayer, Michael Perrott
  • Patent number: 7593644
    Abstract: A RF-synchronization system includes a laser that creates pulse trains for synchronization. A modulation means transfers the timing information of the pulse train into an amplitude modulation of an optical or electronic system. A synchronization module changes the driving frequency of the modulation means until it reaches a phase-locked state with the pulse train.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: September 22, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Franz X. Kaertner, Jung Won Kim, Michael Perrott
  • Publication number: 20080069292
    Abstract: Described is a compact, lower power gated ring oscillator time-to-digital converter that achieves first order noise shaping of quantization noise using a digital implementation. The gated ring oscillator time-to-digital converter includes a plurality of delay stages configured to enable propagation of a transitioning signal through the delay stages during an enabled state and configured to inhibit propagation of the transitioning signal through the delay stages during a disabled state. Delay stages are interconnected to allow sustained transitions to propagate through the delay stages during the enabled state and to preserve a state of the gated ring oscillator time-to-digital converter during the disabled state. The state represents a time resolution that is finer than the delay of at least one of the delay stages. A measurement module determines the number of transitions of the delay stages.
    Type: Application
    Filed: September 13, 2007
    Publication date: March 20, 2008
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Matthew Straayer, Michael Perrott