Patents by Inventor Michael Perrott

Michael Perrott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955993
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: April 9, 2024
    Assignee: INVENSENSE, INC.
    Inventor: Michael Perrott
  • Publication number: 20230246617
    Abstract: Exemplary multipath digital microphones described herein can comprise exemplary embodiments of automatic gain control and multipath digital audio signal digital signal processing chains, which allow low power and die size to be achieved as described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can facilitate switching between multipath digital audio signal digital signal processing chains while minimizing audible artifacts associated with either the change in the gain automatic gain control amplifiers switching between multipath digital audio signal digital signal processing chains.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Igor Mucha, Michael Perrott
  • Patent number: 11637537
    Abstract: Exemplary multipath digital microphones described herein can comprise exemplary embodiments of automatic gain control and multipath digital audio signal digital signal processing chains, which allow low power and die size to be achieved as described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can facilitate switching between multipath digital audio signal digital signal processing chains while minimizing audible artifacts associated with either the change in the gain automatic gain control amplifiers switching between multipath digital audio signal digital signal processing chains.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: April 25, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Igor Mucha, Michael Perrott
  • Publication number: 20220407528
    Abstract: A system comprises a digital processing circuit, a frequency modulator, an amplitude modulator, and an adder. The digital processing circuit receives an input signal and a correlation signal and generates a frequency tuning parameter and an amplitude modulation parameter. The frequency modulator generates a frequency modulation signal and the correlation signal. The amplitude modulator receives the amplitude modulation parameter and generates an amplitude modulation signal. The adder receives the frequency tuning parameter and the frequency modulation signal and generates a control signal. In some implementations, the system further comprises a DC feedback circuit that receives the input signal and generates a DC compensation signal. In some implementations, the system further comprises a temperature sensor, a temperature compensation circuit, and a second adder.
    Type: Application
    Filed: April 28, 2022
    Publication date: December 22, 2022
    Inventors: Michael PERROTT, Bichoy BAHR
  • Publication number: 20220294466
    Abstract: Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
    Type: Application
    Filed: May 31, 2022
    Publication date: September 15, 2022
    Inventor: Michael Perrott
  • Patent number: 11374589
    Abstract: Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: June 28, 2022
    Assignee: INVENSENSE, INC.
    Inventor: Michael Perrott
  • Publication number: 20210091785
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventor: Michael Perrott
  • Patent number: 10948515
    Abstract: A device may include a sensor, a sampling unit, and an interpolator. The sensor may be configured to sense motion and output a sensed signal. The sampling unit may be configured to sample the sensed signal with a sensor clocking signal to generate a plurality of sampled values. The interpolator may be coupled to the sampling unit and may be configured to receive the plurality of sampled values, the sensor clocking signal, and a reference clocking signal external to the device. The interpolator may be configured to interpolate the plurality of sampled values based on the reference clocking signal and further based on the sensor clocking signal to generate a plurality of output values.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: March 16, 2021
    Assignee: InvenSease, Inc.
    Inventors: Sriraman Dakshinamurthy, Michael Perrott, Amaresh Malipatil, William Kerry Keal, Andy F. Milota
  • Publication number: 20210044302
    Abstract: Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventor: Michael Perrott
  • Patent number: 10892772
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 12, 2021
    Assignee: INVENSENSE, INC.
    Inventor: Michael Perrott
  • Patent number: 10852135
    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: December 1, 2020
    Assignee: InvenSense, Inc.
    Inventors: Alireza Shirvani, Michael Perrott
  • Patent number: 10855308
    Abstract: Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: December 1, 2020
    Assignee: INVENSENSE, INC.
    Inventor: Michael Perrott
  • Publication number: 20200358416
    Abstract: Exemplary multipath digital microphones described herein can comprise exemplary embodiments of automatic gain control and multipath digital audio signal digital signal processing chains, which allow low power and die size to be achieved as described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can facilitate switching between multipath digital audio signal digital signal processing chains while minimizing audible artifacts associated with either the change in the gain automatic gain control amplifiers switching between multipath digital audio signal digital signal processing chains.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: Igor Mucha, Michael Perrott
  • Patent number: 10727798
    Abstract: Exemplary multipath digital microphones described herein can comprise exemplary embodiments of automatic gain control and multipath digital audio signal digital signal processing chains, which allow low power and die size to be achieved as described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can facilitate switching between multipath digital audio signal digital signal processing chains while minimizing audible artifacts associated with either the change in the gain automatic gain control amplifiers switching between multipath digital audio signal digital signal processing chains.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: July 28, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Igor Mucha, Michael Perrott
  • Publication number: 20200162099
    Abstract: Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 21, 2020
    Inventor: Michael Perrott
  • Patent number: 10578572
    Abstract: A gas sensor device with temperature uniformity is presented herein. In an implementation, a device includes a complementary metal-oxide semiconductor (CMOS) substrate layer, a dielectric layer and a gas sensing layer. The dielectric layer is deposited on the CMOS substrate layer. Furthermore, the dielectric layer includes a temperature sensor and a heating element coupled to a heat transfer layer associated with a set of metal interconnections. The gas sensing layer is deposited on the dielectric layer.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: March 3, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Fang Liu, Jim Salvia, Zhineng Zhu, Michael Perrott
  • Publication number: 20200059241
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 20, 2020
    Inventor: Michael Perrott
  • Publication number: 20200059214
    Abstract: Exemplary multipath digital microphones described herein can comprise exemplary embodiments of automatic gain control and multipath digital audio signal digital signal processing chains, which allow low power and die size to be achieved as described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can facilitate switching between multipath digital audio signal digital signal processing chains while minimizing audible artifacts associated with either the change in the gain automatic gain control amplifiers switching between multipath digital audio signal digital signal processing chains.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 20, 2020
    Inventors: Michael Perrott, Igor Mucha
  • Publication number: 20190339077
    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Alireza SHIRVANI, Michael PERROTT
  • Patent number: 10393522
    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: August 27, 2019
    Assignee: InvenSense, Inc.
    Inventors: Alireza Shirvani, Michael Perrott