Patents by Inventor Michael R. Knapp

Michael R. Knapp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020017464
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Application
    Filed: May 3, 2001
    Publication date: February 14, 2002
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 6287520
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: September 11, 2001
    Assignee: Caliper Technologies Corp.
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 6238538
    Abstract: Microfluidic devices are provided for the performance of chemical and biochemical analyses, syntheses and detection. The devices of the invention combine precise fluidic control systems with microfabricated polymeric substrates to provide accurate, low cost miniaturized analytical devices that have broad applications in the fields of chemistry, biochemistry, biotechnology, molecular biology and numerous other fields.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: May 29, 2001
    Assignee: Caliper Technologies, Corp.
    Inventors: John Wallace Parce, Michael R. Knapp, Calvin Y. H. Chow, Luc Bousse
  • Patent number: 6156181
    Abstract: Microfluidic devices are provided for the performance of chemical and biochemical analyses, syntheses and detection. The devices of the invention combine precise fluidic control systems with microfabricated polymeric substrates to provide accurate, low cost miniaturized analytical devices that have broad applications in the fields of chemistry, biochemistry, biotechnology, molecular biology and numerous other fields.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: December 5, 2000
    Assignee: Caliper Technologies, Corp.
    Inventors: John Wallace Parce, Michael R. Knapp, Calvin Y. H. Chow, Luc Bousse
  • Patent number: 6080295
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: June 27, 2000
    Assignee: Caliper Technologies Corporation
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 6042709
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: March 28, 2000
    Assignee: Caliper Technologies Corp.
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 6004744
    Abstract: The invention concerns a reagent composition that employs at least two different terminators of a nucleic acid template-dependent primer extension reaction to determine the identity of a nucleotide base at a specific position in a nucleic acid of interest. The invention also concerns an immobilized method for determining such identification. The invention may be used to determine the presence or absence of a specific nucleotide sequence in a sample. It may also be employed in determination of genotype and in the identification of different alleles.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: December 21, 1999
    Assignee: Molecular Tool, Inc.
    Inventors: Philip Goelet, Michael R. Knapp, Stephen Anderson
  • Patent number: 5972187
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: October 26, 1999
    Assignee: Caliper Technologies Corporation
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 5958203
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: September 28, 1999
    Assignee: Caliper Technologies Corportion
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 5888819
    Abstract: The invention concerns a reagent composition that employs at least two different terminators of a nucleic acid template-dependent primer extension reaction to determine the identity of a nucleotide base at a specific position in a nucleic acid of interest. The invention also concerns the method for determining such identification. The invention may be used to determine the presence or absence of a specific nucleotide sequence in a sample. It may also be employed in determination of genotype and in the identification of different alleles.
    Type: Grant
    Filed: March 5, 1991
    Date of Patent: March 30, 1999
    Assignee: Molecular Tool, Inc.
    Inventors: Philip Goelet, Michael R. Knapp, Stephen Anderson
  • Patent number: 5885470
    Abstract: Microfluidic devices are provided for the performance of chemical and biochemical analyses, syntheses and detection. The devices of the invention combine precise fluidic control systems with microfabricated polymeric substrates to provide accurate, low cost miniaturized analytical devices that have broad applications in the fields of chemistry, biochemistry, biotechnology, molecular biology and numerous other fields.
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: March 23, 1999
    Assignee: Caliper Technologies Corporation
    Inventors: John Wallace Parce, Michael R. Knapp, Calvin Y. H. Chow, Luc Bousse
  • Patent number: 5880071
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: March 9, 1999
    Assignee: Caliper Technologies Corporation
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 5779868
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The materials are transported in slug regions of high ionic concentration, next to buffer material regions of high ionic concentration, which are separated by buffer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: July 14, 1998
    Assignee: Caliper Technologies Corporation
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 5762876
    Abstract: A device determines the genotype at selected loci within genetic material obtained from a biological sample. One or more data sets are formed and a set of probability distributions including at least one distribution is established. These distributions associate hypothetical reaction values with corresponding probabilities for each genotype of interest at the same locus or at different loci. The genotype is then determined based on these measures.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: June 9, 1998
    Assignee: Molecular Tool, Inc.
    Inventors: Stephen E. Lincoln, Michael R. Knapp
  • Patent number: 5610287
    Abstract: Synthetic nucleic acid molecules are non-covalently immobilized in the presence of a salt or cationic detergent on a hydrophilic polystyrene solid support containing an --OH, --C.dbd.O or --COOH hydrophilic group or on a glass solid support. The support is contacted with a solution having a pH of about 6 to about 8 containing the synthetic nucleic acid and the cationic detergent or salt. Preferably, the cationic detergent is 1-ethyl-3-(3'-dimethylaminopropyl)-1,3-carbodiimide hyrochloride at a concentration of about 30 mM to about 100 mM or octyldimethylamine hydrochloride at a concentration of about 50 mM to about 150 mM. The salt is preferably NaCl at a concentration of about 50 mM to about 250 mM. When the detergent is 1-ethyl-3-(3'-dimethylaminopropyl)-1,3-carbodiimide hyrochloride, the glass support or the hydrophilic polystyrene support is used. When NaCl or octyldimethylamine hydrochloride is used, the support is the hydrophilic polystyrene.
    Type: Grant
    Filed: November 16, 1994
    Date of Patent: March 11, 1997
    Assignee: Molecular Tool, Inc.
    Inventors: Theo Nikiforov, Michael R. Knapp
  • Patent number: 5595870
    Abstract: This invention provides a method of determining whether a nucleic acid molecule having a sequence of interest is present within a nucleic acid-containing sample which comprises the steps: (A) subjecting said nucleic acid of said sample to a treatment sufficient to fragment said nucleic acid and to produce a plurality of fragments derived from said nucleic acid; (B) fractionating said plurality of fragments; (C) contacting said fractionated plurality of fragments, under hybridizing conditions, with a reagent comprising a mixture of random or pseudorandom oligonucleotides, said oligonucleotides having a length a .gtoreq.3 and .ltoreq.
    Type: Grant
    Filed: August 13, 1993
    Date of Patent: January 21, 1997
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Michael R. Knapp, Philip Goelet
  • Patent number: 5518900
    Abstract: A method for generating single-stranded nucleic acid molecules. The molecules contain nuclease resistant modified nucleotides, such that they are resistant to 5'.fwdarw.3' exonucleases.
    Type: Grant
    Filed: November 23, 1993
    Date of Patent: May 21, 1996
    Assignee: Molecular Tool, Inc.
    Inventors: Theo T. Nikiforov, Michael R. Knapp