Patents by Inventor Michael Seul

Michael Seul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050059063
    Abstract: Disclosed is a method for the physico-chemical encoding of a collection of beaded resin (“beads”) allowing determination of the chemical identity of bead-anchored compounds, following identification of beads bearing compounds of interest in an assay, by in-situ interrogation of individual beads, which does not require isolation of the beads of interest. These methods can be used to implement color-coding strategies in applications and including the ultrahigh-throughput screening of bead-based combinatorial compounds libraries as well as multiplexed diagnostic and environmental testing and other biochemical assays.
    Type: Application
    Filed: August 9, 2004
    Publication date: March 17, 2005
    Inventors: Michael Seul, Richard Ebright
  • Publication number: 20050032106
    Abstract: Dislcosed is a method of analyzing tandem repeats using one or more probes, each such probe may lack an anchoring sequence but contains one or more tandem repeat sequences complementary to the target tandem repeat sequences. In one embodiment, each probe is attached, via its 5? end, to an encoded microparticle (“bead”), wherein the code—implemented by way of a color scheme—identifies the sequence and length of the probe attached thereto. Also disclosed are methods relating to the analysis of partial duplex configurations involving only partial overlap between probe and target repeats and thus “overhangs” of probe repeats on the 3? and/or 5? ends of the target repeats.
    Type: Application
    Filed: August 6, 2004
    Publication date: February 10, 2005
    Inventor: Michael Seul
  • Publication number: 20040229269
    Abstract: Described are methods of assay design and assay image correction, useful for multiplexed genetic screening for mutations and polymorphisms, including CF-related mutants and polymorphs, using an array of probe pairs (in one aspect, where one member is complementary to a particular mutant or polymorphic allele and the other member is complementary to a corresponding wild type allele), with probes bound to encoded particles (e.g., beads) wherein the encoding allows identification of the attached probe. The methods relate to avoiding cross-hybridization by selection of probes and amplicons, as well as separation of reactions of certain probes and amplicons where a homology threshold is exceeded. Methods of correcting a fluorescent image using a background map, where the particles also contain an optical encoding system, are also disclosed.
    Type: Application
    Filed: May 17, 2004
    Publication date: November 18, 2004
    Inventors: Ghazala Hashmi, Michael Seul
  • Patent number: 6797524
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: September 28, 2004
    Assignee: Bioarray Solutions Ltd.
    Inventor: Michael Seul
  • Publication number: 20040159546
    Abstract: A dynamically configurable electrode includes a first planar electrode and a planar array of pixels in a different plane, wherein a polarizable liquid medium (including electrolyte solutions) is to reside in the gap between electrodes. The pixels are individually addressable by a time-varying voltage, and adjacent pixels receive, at any instant in time, either the same voltage waveform or a different voltage waveform. Adjacent pixels receiving different voltage waveforms generate corresponding movement of dipolar entities, including dipolar particles, ions, or dipolar molecules in the polarizable liquid medium between the electrodes, which can in turn generate fluid flow and movement of particles suspended in the fluid along the planar array surface.
    Type: Application
    Filed: February 14, 2004
    Publication date: August 19, 2004
    Inventors: Yi Zhang, Michael Seul
  • Publication number: 20040139565
    Abstract: A dye, such as a fluorescent dye, is incorporated into polymer microparticles using a solvent system composed of a first solvent in which the dye and the microparticle polymer are soluble, a second solvent in which the dye and the microparticle polymer are not or only weakly soluble, and a third solvent in which the dye and the microparticle polymer are not or only weakly soluble. The first and second solvents are immiscible with each other, or at most partially miscible. The third solvent is miscible with the first and second solvents. The formulation provides substantially complete partitioning of the dye to the microparticles. The method may be used to obtain dyed polymer microparticle formed of cross-linked or non-cross-linked polymers. Libraries are provided comprising two or more sets of microparticles of different dye loadings.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 22, 2004
    Applicants: BioArray Solutions, Ltd., Lehigh University
    Inventors: Sukanta Banerjee, Cecilia Georgescu, Eric S. Daniels, Victoria L. Dimonie, Michael Seul
  • Publication number: 20040142102
    Abstract: Solute-loaded polymer microparticles are obtained by immersing microparticles in a bath comprising a selected solute dissolved in a ternary solvent system. A first solvent of the ternary system is a strong solvent for both the solute and the polymer from which the microparticle was formed. A second solvent is a weak solvent or non-solvent for the solute and the polymer (tuning solvent). A third solvent is a weak solvent or non-solvent for the solute and polymer, but serves as a co-solvent with respect to the first and second solvents in that it is miscible with both the first and second solvents. The amount of solute incorporated into the microparticles is controlled by adjusting the ratio of solute with respect to the microparticle polymer, and by adjusting the composition of the ternary solvent system, principally the amount of tuning solvent.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 22, 2004
    Applicant: BioArray Solutions, Ltd.
    Inventors: Sukanta Banerjee, Cecilia Georgescu, Michael Seul
  • Publication number: 20040136875
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: September 5, 2003
    Publication date: July 15, 2004
    Inventors: Michael Seul, Chiu Wo Chau
  • Publication number: 20040132122
    Abstract: The present invention provides methods and apparatus for the application of a particle array in bioassay format to perform qualitative and/or quantitative molecular interaction analysis between two classes of molecules (an analyte and a binding agent). The methods and apparatus disclosed herein permit the determination of the presence or absence of association, the strength of association, and/or the rate of association and dissociation governing the binding interactions between the binding agents and the analyte molecules. The present invention is especially useful for performing multiplexed (parallel) assays for qualitative and/or quantitative analysis of binding interactions of a number of analyte molecules in a sample.
    Type: Application
    Filed: February 19, 2003
    Publication date: July 8, 2004
    Inventors: Sukanta Banerjee, Michael Seul, Alice X. Li, Kairali Podual, Chiu W. Chau
  • Publication number: 20040129568
    Abstract: A method and apparatus for fractionation of a mixture of particles and for particle analysis are provided, in which LEAPS (“Light-controlled Electrokinetic Assembly of Particles near Surfaces”) is used to fractionate and analyze a plurality of particles suspended in an interface between an electrode and an electrolyte solution. A mixture of particles are fractionated according to their relaxation frequencies, which in turn reflect differences in size or surface composition of the particles. Particles may also be analyzed to determine their physical and chemical properties based on particle relaxation frequency and maximal velocity.
    Type: Application
    Filed: September 9, 2003
    Publication date: July 8, 2004
    Inventors: Michael Seul, Sukanta Banerjee, Kairali Podual
  • Publication number: 20040101191
    Abstract: Systems and methods are provided the autocentering, autofocusing, acquiring, decoding, aligning, analyzing and exchanging among various parties, images, where the images are of arrays of signals associated with ligand-receptor interactions, and more particularly, ligand-receptor interactions where a multitude of receptors are associated with microparticles or microbeads. The beads are encoded to indicate the identity of the receptor attached, and therefore, an assay image and a decoding image are aligned to effect the decoding. The images or data extracted from such images can be exchanged between de-centralized assay locations and a centralized location where the data are analyzed to indicate assay results. Access to data can be restricted to authorized parties in possession of certain coding information, so as to preserve confidentiality.
    Type: Application
    Filed: November 14, 2003
    Publication date: May 27, 2004
    Inventors: Michael Seul, Xiongwu Xia, Chiu Chau
  • Publication number: 20040096846
    Abstract: A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: March 10, 2003
    Publication date: May 20, 2004
    Inventor: Michael Seul
  • Publication number: 20040072372
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: July 21, 2003
    Publication date: April 15, 2004
    Inventors: Michael Seul, Chiu Wo Chau
  • Patent number: 6706163
    Abstract: A method and apparatus for fractionation of a mixture of particles and for particle analysis are provided, in which LEAPS (“Light-controlled Electrokinetic Assembly of Particles near Surfaces”) is used to fractionate and analyze a plurality of particles suspended in an interface between an electrode and an electrolyte solution. A mixture of particles are fractionated according to their relaxation frequencies, which in turn reflect differences in size or surface composition of the particles. Particles may also be analyzed to determine their physical and chemical properties based on particle relaxation frequency and maximal velocity.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: March 16, 2004
    Inventors: Michael Seul, Sukanta Banerjee, Kairali Podual
  • Publication number: 20040048259
    Abstract: This invention provides compositions and methods for genetic testing of an organism and for correlating the results of the genetic testing with a unique marker that unambiguously identifies the organism. The markers may be internal markers, such as for example single nucleotide polymorphisms (SNPs), short tandem repeats (STRs), or other sites within a genomic locus. Alternatively, the markers may be external, such that they are separately added to the genetic sample before testing.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 11, 2004
    Inventors: Ghazala Hashmi, Michael Seul, Joachim Messing
  • Publication number: 20040037744
    Abstract: A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: August 21, 2003
    Publication date: February 26, 2004
    Inventor: Michael Seul
  • Publication number: 20040018643
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: February 13, 2003
    Publication date: January 29, 2004
    Inventors: Michael Seul, Chiu Wo Chau
  • Publication number: 20040002073
    Abstract: The invention provides methods and processes for the identification of polymorphisms at one or more designated sites, without interference from non-designated sites located within proximity of such designated sites. Probes are provided capable of interrogation of such designated sites in order to determine the composition of each such designated site. By the methods of this invention, one or more mutations within the CFTR gene and the HLA gene complex can be can be identified.
    Type: Application
    Filed: October 15, 2002
    Publication date: January 1, 2004
    Inventors: Alice Xiang Li, Ghazala Hashmi, Michael Seul
  • Publication number: 20030228610
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: April 28, 2003
    Publication date: December 11, 2003
    Inventor: Michael Seul
  • Publication number: 20030138842
    Abstract: The present invention relates to a systematic process for the creation of functionally organized, spatially patterned assemblies polymer-microparticle composites including the AC electric field-mediated assembly of patterned, self supporting organic (polymeric) films and organic-polymer-microparticle composites of tailored composition and morphology. The present invention further relates to the incorporation of said assemblies into other structures. The present invention. also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, and micro-reactors, and miniaturized format for generation of multifunctional thin films.
    Type: Application
    Filed: June 21, 2002
    Publication date: July 24, 2003
    Inventors: Michael Seul, Sukanta Banerjee, Kairali Podual, Ye Hong