Patents by Inventor Michael Seul

Michael Seul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040072372
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: July 21, 2003
    Publication date: April 15, 2004
    Inventors: Michael Seul, Chiu Wo Chau
  • Patent number: 6706163
    Abstract: A method and apparatus for fractionation of a mixture of particles and for particle analysis are provided, in which LEAPS (“Light-controlled Electrokinetic Assembly of Particles near Surfaces”) is used to fractionate and analyze a plurality of particles suspended in an interface between an electrode and an electrolyte solution. A mixture of particles are fractionated according to their relaxation frequencies, which in turn reflect differences in size or surface composition of the particles. Particles may also be analyzed to determine their physical and chemical properties based on particle relaxation frequency and maximal velocity.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: March 16, 2004
    Inventors: Michael Seul, Sukanta Banerjee, Kairali Podual
  • Publication number: 20040048259
    Abstract: This invention provides compositions and methods for genetic testing of an organism and for correlating the results of the genetic testing with a unique marker that unambiguously identifies the organism. The markers may be internal markers, such as for example single nucleotide polymorphisms (SNPs), short tandem repeats (STRs), or other sites within a genomic locus. Alternatively, the markers may be external, such that they are separately added to the genetic sample before testing.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 11, 2004
    Inventors: Ghazala Hashmi, Michael Seul, Joachim Messing
  • Publication number: 20040037744
    Abstract: A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: August 21, 2003
    Publication date: February 26, 2004
    Inventor: Michael Seul
  • Publication number: 20040018643
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: February 13, 2003
    Publication date: January 29, 2004
    Inventors: Michael Seul, Chiu Wo Chau
  • Publication number: 20040002073
    Abstract: The invention provides methods and processes for the identification of polymorphisms at one or more designated sites, without interference from non-designated sites located within proximity of such designated sites. Probes are provided capable of interrogation of such designated sites in order to determine the composition of each such designated site. By the methods of this invention, one or more mutations within the CFTR gene and the HLA gene complex can be can be identified.
    Type: Application
    Filed: October 15, 2002
    Publication date: January 1, 2004
    Inventors: Alice Xiang Li, Ghazala Hashmi, Michael Seul
  • Publication number: 20030228610
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: April 28, 2003
    Publication date: December 11, 2003
    Inventor: Michael Seul
  • Publication number: 20030138842
    Abstract: The present invention relates to a systematic process for the creation of functionally organized, spatially patterned assemblies polymer-microparticle composites including the AC electric field-mediated assembly of patterned, self supporting organic (polymeric) films and organic-polymer-microparticle composites of tailored composition and morphology. The present invention further relates to the incorporation of said assemblies into other structures. The present invention. also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, and micro-reactors, and miniaturized format for generation of multifunctional thin films.
    Type: Application
    Filed: June 21, 2002
    Publication date: July 24, 2003
    Inventors: Michael Seul, Sukanta Banerjee, Kairali Podual, Ye Hong
  • Publication number: 20030124746
    Abstract: A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: December 4, 2002
    Publication date: July 3, 2003
    Inventor: Michael Seul
  • Publication number: 20030082587
    Abstract: This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
    Type: Application
    Filed: July 9, 2002
    Publication date: May 1, 2003
    Inventors: Michael Seul, Chiu Wo Chau, Hui Huang, Sukanta Banerjee, Jiacheng Yang, Ye Hong
  • Publication number: 20030045005
    Abstract: A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: August 23, 2002
    Publication date: March 6, 2003
    Inventor: Michael Seul
  • Patent number: 6514771
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: February 4, 2003
    Assignee: Bioarray Solutions
    Inventor: Michael Seul
  • Publication number: 20030022393
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: March 27, 2002
    Publication date: January 30, 2003
    Inventors: Michael Seul, Alice Xiang Li
  • Publication number: 20030006143
    Abstract: The present invention relates to a systematic process for the creation of functionally organized, spatially patterned assemblies polymer-microparticle composites including the AC electric field-mediated assembly of patterned, self supporting organic (polymeric) films and organic (polymeric)—microparticle composite films of tailored composition and morphology; the present invention further relates to the incorporation of said assemblies into other structures. The present invention. also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, micro-reactors, smart materials. Miniaturized format for generation of multifunctional thin films.
    Type: Application
    Filed: December 26, 2001
    Publication date: January 9, 2003
    Inventors: Sukanta Banerjee, Kairali Podual, Michael Seul
  • Publication number: 20020198665
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in array format, and the functional integration of these operations.
    Type: Application
    Filed: March 16, 2002
    Publication date: December 26, 2002
    Inventors: Michael Seul, Chiu Wo Chau
  • Publication number: 20020166766
    Abstract: A method and apparatus for fractionation of a mixture of particles and for particle analysis are provided, in which LEAPS (“Light-controlled Electrokinetic Assembly of Particles near Surfaces”) is used to fractionate and analyze a plurality of particles suspended in an interface between an electrode and an electrolyte solution. A mixture of particles are fractionated according to their relaxation frequencies, which in turn reflect differences in size or surface composition of the particles. Particles may also be analyzed to determine their physical and chemical properties based on particle relaxation frequency and maximal velocity.
    Type: Application
    Filed: March 21, 2001
    Publication date: November 14, 2002
    Inventors: Michael Seul, Sukanta Banerjee, Kairali Podual
  • Patent number: 6468811
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: October 22, 2002
    Assignee: Bioarray Solutions
    Inventor: Michael Seul
  • Publication number: 20020123078
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled elektrokinetic assembly of particles near surfaces relies on the combination of three functional elements. the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Application
    Filed: November 28, 2001
    Publication date: September 5, 2002
    Inventors: Michael Seul, Alice X. Li
  • Publication number: 20020090613
    Abstract: A method and apparatus for the physico-chemical encoding of a collection of beaded resin (“beads”) to determine the chemical identity of bead-anchored compounds by in-situ interrogation of individual beads. The present invention provides method and apparatus to implement color-coding strategies in applications and including the ultrahigh-throughput screening of bead-based combinatorial compounds libraries as well as multiplexed diagnostic and environmental testing and other biochemical assays.
    Type: Application
    Filed: November 22, 1999
    Publication date: July 11, 2002
    Inventors: MICHAEL SEUL, RICHARD H. EBRIGHT
  • Patent number: 6387707
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: May 14, 2002
    Assignee: Bioarray Solutions
    Inventors: Michael Seul, Alice Xiang Li