Patents by Inventor Michael Seul

Michael Seul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110184655
    Abstract: Disclosed is number coding of pairs (“doublets”) or small sets (“multiplets”) of solid phase carriers which provides distinguishable subtypes of a given type of such carriers, where each carrier type is distinguishable on the bases of a different code. Such number coding is useful for augmenting a coding system, such as a color code, and thereby effectively multiplying the number of “colors” (distinguishable sub-types). It can be applied, for example, to determine whether a sample is homozygous or heterozygous at a number of different sites for one of two different alleles, where the same color code is applied for each of the two alleles, and the alleles with the same color code are distinguished by knowing how many carriers are associated with molecules which detect each different allele.
    Type: Application
    Filed: March 24, 2011
    Publication date: July 28, 2011
    Applicant: BioArray Solutions, Ltd.
    Inventors: Michael Seul, Enqing Tan, Chiu Chau
  • Patent number: 7977050
    Abstract: A method mediated with in-vitro transcription (“IVT”) which permits miniaturization of multiplexed DNA and RNA analysis, and in which elongation-mediated multiplexed analysis of polymorphisms (eMAP®) is used as the analysis step, is described. Also described is a method mediated with IVT is for selecting a designated strand from T7-tagged double stranded DNA: wherein, the selected strand forms the template for RNA synthesis. In one embodiment, double stranded DNA incorporating the T7 (or other) promoter sequence at the 3? end or the 5? end is produced, for example, by amplification of genomic DNA using the Polymerase Chain Reaction (PCR). Also disclosed are nested PCR designs permitting allele analysis in combination with strand selection by IVT.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: July 12, 2011
    Assignee: Bioarray Solutions, Ltd.
    Inventors: Michael Seul, Nataliya Korzheva, Jiacheng Yang, Yi Zhang
  • Patent number: 7970553
    Abstract: Disclosed is a method of iteratively optimizing two (or more) interrelated sets of probes for the multi-step analysis of sets of designated sequences, each such sequence requiring, for conversion, at least one conversion probe (“primer”), and each converted sequence requiring, for detection, at least one capture probe. The iterative method disclosed herein for the concurrent optimization of primer and probe selection invokes fast logical string matching functions to perform a complete cross-correlation of probe sequences and target sequences. The score function assigns to each probe-target alignment a “degree of matching” score on the basis of position-weighted Hamming distance functions introduced herein. Pairs of probes in the final selection may differ in several positions, while other pairs of probes may differ in only a single position. Not all such positions are of equal importance, and a score function is introduced, reflecting the position of the mismatch within the probe sequence.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: June 28, 2011
    Assignee: BioArray Solutions, Ltd.
    Inventors: Michael Seul, Tatiana Vener, Xiongwu Xia
  • Patent number: 7940968
    Abstract: Systems and methods are provided the autocentering, autofocusing, acquiring, decoding, aligning, analyzing and exchanging among various parties, images, where the images are of arrays of signals associated with ligand-receptor interactions, and more particularly, ligand-receptor interactions where a multitude of receptors are associated with microparticles or microbeads. The beads are encoded to indicate the identity of the receptor attached, and therefore, an assay image and a decoding image are aligned to effect the decoding. The images or data extracted from such images can be exchanged between de-centralized assay locations and a centralized location where the data are analyzed to indicate assay results. Access to data can be restricted to authorized parties in possession of certain coding information, so as to preserve confidentiality.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: May 10, 2011
    Assignee: BioArray Solutions, Ltd.
    Inventors: Michael Seul, Xiongwu Xia, Chiu Chau
  • Publication number: 20110098201
    Abstract: This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Applicant: BioArray Solutions, Ltd.
    Inventors: Michael Seul, Chiu Wo Chau, Hui Huang, Sukanta Banerjee, Jiacheng Yang, Ye Hong
  • Patent number: 7927796
    Abstract: Disclosed is number coding of pairs (“doublets”) or small sets (“multiplets”) of solid phase carriers which provides distinguishable subtypes of a given type of such carriers, where each carrier type is distinguishable on the basis of a different code. Such number coding is useful for augmenting a coding system, such as a color code, and thereby effectively multiplying the number of “colors” (distinguishable sub-types). It can be applied, for example, to determine whether a sample is homozygous or heterozygous at a number of different sites for one of two different alleles, where the same color code is applied for each of the two alleles, and the alleles with the same color code are distinguished by knowing how many carriers are associated with molecules which detect each different allele.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: April 19, 2011
    Assignee: BioArray Solutions, Ltd.
    Inventors: Michael Seul, Enqing Tan, Chiu Chau
  • Publication number: 20110077167
    Abstract: Disclosed are methods and algorithms (and their implementation) supporting the automated analysis and interactive review and refinement (“redaction”) of the analysis within an integrated software environment, for automated allele assignments. The implementation, preferably with a software system and a program referred to as the Automated Allele Assignment (“AAA”) program, provides a multiplicity of functionalities including: data management by way of an integrated interface to a portable database to permit visualizing, importing, exporting and creating customizable summary reports; system configuration (“Set-up”) including user authorization, training set analysis and probe masking; Pattern Analysis including string matching and probe flipping; and Interactive Redaction combining real-time database computations and “cut-and-paste” editing, generating “warning” statements and supporting annotation.
    Type: Application
    Filed: December 6, 2010
    Publication date: March 31, 2011
    Inventors: Xiongwu Xia, Michael Seul
  • Patent number: 7892854
    Abstract: The present invention provides methods and apparatus for the application of a particle array in bioassay format to perform qualitative and/or quantitative molecular interaction analysis between two classes of molecules (an analyte and a binding agent). The methods and apparatus disclosed herein permit the determination of the presence or absence of association, the strength of association, and/or the rate of association and dissociation governing the binding interactions between the binding agents and the analyte molecules. The present invention is especially useful for performing multiplexed (parallel) assays for qualitative and/or quantitative analysis of binding interactions of a number of analyte molecules in a sample.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: February 22, 2011
    Assignee: BioArray Solutions, Ltd.
    Inventors: Sukanta Banerjee, Michael Seul, Alice X. Li, Kairali Podual, Chiu W. Chau
  • Patent number: 7858301
    Abstract: Disclosed is an analysis method useful in multiplexed hybridization-mediated analysis of polymorphisms, i.e., wherein a labeled nucleic acid of interest (“target”) interacts with two or more pairs of immobilized degenerate capture probes. In one embodiment, one member of each pair has a sequence that is complementary to the normal (“wild-type”) sequence in a designated location of the target, while the other member of each pair has a sequence that is complementary to an anticipated variant (“mutant” or “polymorph”) sequence in that location of the target. These methods permit selection of two or more probe pairs such that, for each pair of probes interacting with a given target strand, interaction of the target with a preferred member of the probe pair is optimized. Also interpreting results obtained by multiplexed hybridization of the target to two or more pairs of probes under conditions permitting competitive hybridization is disclosed.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: December 28, 2010
    Assignee: Bioarray Solutions, Ltd.
    Inventors: Vera Cherepinsky, Bhubaneswar Mishra, Ghazala Hashmi, Michael Seul
  • Patent number: 7848889
    Abstract: Disclosed are methods and algorithms (and their implementation) supporting the automated analysis and interactive review and refinement (“redaction”) of the analysis within an integrated software environment, for automated allele assignments. The implementation, preferably with a software system and a program referred to as the Automated Allele Assignment (“AAA”) program, provides a multiplicity of functionalities including: data management by way of an integrated interface to a portable database to permit visualizing, importing, exporting and creating customizable summary reports; system configuration (“Set-up”) including user authorization, training set analysis and probe masking; Pattern Analysis including string matching and probe flipping; and Interactive Redaction combining real-time database computations and “cut-and-paste” editing, generating “warning” statements and supporting annotation.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: December 7, 2010
    Assignee: BioArray Solutions, Ltd.
    Inventors: Xiongwu Xia, Michael Seul
  • Patent number: 7842649
    Abstract: This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: November 30, 2010
    Assignee: BioArray Solutions, Ltd.
    Inventors: Michael Seul, Chiu Wo Chau, Hui Huang, Sukanta Banerjee, Jiacheng Yang, Ye Hong
  • Publication number: 20100267578
    Abstract: In a multiplexed assay method carried out in solution, wherein the solution contains nucleic acid targets and, wherein several different types of oligonucleotide probes, each type having a different sequence in a region designated as a target binding domain, are used to detect the nucleic acid targets, said assay method including a method for increasing the effective concentration of the nucleic acid targets at the surface of a bead to which the oligonucleotide probes are bound, by one or more of the following steps: adjusting assay conditions so as to increase the effective concentration of the targets available for binding to the probes, by one or more of the following: (i) selecting a particular probe density on the surface of the bead; (ii) selecting a solution having an ionic strength greater than a threshold; (ii) selecting a target domain of a size less than a threshold; or (iii) selecting target domains within a specified proximity to a terminal end of the targets.
    Type: Application
    Filed: February 18, 2010
    Publication date: October 21, 2010
    Applicant: BioArray Solutions, LLC
    Inventors: MICHAEL SEUL, Yi Zhang, Sukanta Banerjee, Jiacheng Yang, Chiu Chau
  • Patent number: 7771939
    Abstract: Described are methods of assay design and assay image correction, useful for multiplexed genetic screening for mutations and polymorphisms, including CF-related mutants and polymorphs, using an array of probe pairs (in one aspect, where one member is complementary to a particular mutant or polymorphic allele and the other member is complementary to a corresponding wild type allele), with probes bound to encoded particles (e.g., beads) wherein the encoding allows identification of the attached probe. The methods relate to avoiding cross-hybridization by selection of probes and amplicons, as well as separation of reactions of certain probes and amplicons where a homology threshold is exceeded. Methods of correcting a fluorescent image using a background map, where the particles also contain an optical encoding system, are also disclosed.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: August 10, 2010
    Assignee: Bioarray Solutions, Ltd.
    Inventors: Ghazala Hashmi, Michael Seul
  • Patent number: 7749774
    Abstract: A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: July 6, 2010
    Inventor: Michael Seul
  • Publication number: 20100021909
    Abstract: Disclosed is a method of iteratively optimizing two (or more) interrelated sets of probes for the multi-step analysis of sets of designated sequences, each such sequence requiring, for conversion, at least one conversion probe (“primer”), and each converted sequence requiring, for detection, at least one capture probe. The iterative method disclosed herein for the concurrent optimization of primer and probe selection invokes fast logical string matching functions to perform a complete cross-correlation of probe sequences and target sequences. The score function assigns to each probe-target alignment a “degree of matching” score on the basis of position-weighted Hamming distance functions introduced herein. Pairs of probes in the final selection may differ in several positions, while other pairs of probes may differ in only a single position. Not all such positions are of equal importance, and a score function is introduced, reflecting the position of the mismatch within the probe sequence.
    Type: Application
    Filed: July 14, 2009
    Publication date: January 28, 2010
    Inventors: Michael Seul, Tatiana Vener, XiongWu Xia
  • Patent number: 7635565
    Abstract: This invention provides compositions and methods for genetic testing of an organism and for correlating the results of the genetic testing with a unique marker that unambiguously identifies the organism. The markers may be internal markers, such as for example single nucleotide polymorphisms (SNPs), short tandem repeats (STRs), or other sites within a genomic locus. Alternatively, the markers may be external, such that they are separately added to the genetic sample before testing.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: December 22, 2009
    Assignee: BioArray Solutions Ltd.
    Inventors: Ghazala Hashmi, Michael Seul, Joachim Messing
  • Publication number: 20090313042
    Abstract: Disclosed is a registry for candidate transfusion donors, which invokes an inventory management policy to create and actively manage lists of candidate donors in order to minimize imbalances between demand and supply across multiple regions and across multiple categories of donors and recipients. Together with a genotyping laboratory, the registry does targeted recruitment of prospective donors who are typed for a set of genetic markers relating to clinically relevant antigens including mutations of Human Erythrocyte Antigens (HEA), genetic variants of Rh, and possibly additional antigens such as HLA and HPA. The registry monitors incoming demand for transfusion antigen genotypes, preferably stratify the demand into a set of categories representing stable subpopulations, and will apply strategies, disclosed herein, to tune the composition of candidate donor lists to match the demand, thereby avoiding excess, and unnecessary, typing of candidate donors.
    Type: Application
    Filed: August 24, 2009
    Publication date: December 17, 2009
    Inventors: Yi Zhang, Michael Seul
  • Patent number: 7625765
    Abstract: The present invention relates to a systematic process for the creation of functionally organized, spatially patterned assemblies polymer-microparticle composites including the AC electric field-mediated assembly of patterned, self supporting organic (polymeric) films and organic (polymeric)-microparticle composite films of tailored composition and morphology; the present invention further relates to the incorporation of said assemblies into other structures. The present invention also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, micro-reactors, smart materials. Miniaturized format for generation of multifunctional thin films. Provides a simple set-up to synthesize thin films of tailored composition and morphology.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: December 1, 2009
    Assignee: Bio Array Solutions Ltd.
    Inventors: Sukanta Banerjee, Kairali Podual, Michael Seul
  • Patent number: 7615345
    Abstract: A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: November 10, 2009
    Assignee: Bio Array Solutions Ltd.
    Inventor: Michael Seul
  • Patent number: 7613573
    Abstract: Disclosed is a registry for candidate transfusion donors, which invokes an inventory management policy to create and actively manage lists of candidate donors in order to minimize imbalances between demand and supply across multiple regions and across multiple categories of donors and recipients. Together with a genotyping laboratory, the registry does targeted recruitment of prospective donors who are typed for a set of genetic markers relating to clinically relevant antigens including mutations of Human Erythrocyte Antigens (HEA), genetic variants of Rh, and possibly additional antigens such as HLA and HPA. The registry monitors incoming demand for transfusion antigen genotypes, preferably stratify the demand into a set of categories representing stable subpopulations, and will apply strategies, disclosed herein, to tune the composition of candidate donor lists to match the demand, thereby avoiding excess, and unnecessary, typing of candidate donors.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: November 3, 2009
    Inventors: Yi Zhang, Michael Seul