Patents by Inventor Michael Siskin

Michael Siskin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200164303
    Abstract: An absorbent for the selective removal of hydrogen sulfide from a fluid stream comprising carbon dioxide and hydrogen sulfide, wherein the absorbent contains an aqueous solution, comprising: a) an amine or a mixture of amines of the general formula (I) wherein R1 is C1-C5-alkyl; R2 is C1-C5-alkyl; R3 is selected from hydrogen and C1-C5-alkyl; x is an integer from 2 to 10; and b) an ether or a mixture of ethers of the general formula (II): R4—[O—CH2—CH2]y—OH; wherein R4 is C1-C5-alkyl; and y is an integer from 2 to 10; wherein R1 and R4 are identical; wherein the mass ratio of b) to a) is from 0.08 to 0.5. The absorbent is suitable for the selective removal of hydrogen sulfide from a fluid stream comprising carbon dioxide and hydrogen sulfide. The absorbent has a reduced tendency for phase separation at temperatures falling within the usual range of regeneration temperatures for the aqueous amine mixtures and is easily obtainable.
    Type: Application
    Filed: May 14, 2018
    Publication date: May 28, 2020
    Inventors: Martin ERNST, Gerald VORBERG, Georg SIEDER, Thomas INGRAM, Virginia REINER, Carla PEREIRA, Michael SISKIN
  • Patent number: 10525404
    Abstract: A process for removing acid gases from a fluid stream, wherein the fluid stream is contacted with an absorbent comprising a compound of the general formula (I), wherein R1 and R2 are independently C1-C4-alkyl; R3 is selected from hydrogen and C1-C4-alkyl, R4, R5 and R6 are independently selected from hydrogen and C1-C4-alkyl; x and y are integers from 2 to 4 and z is an integer from 1 to 3, to obtain a treated fluid stream and a laden absorbent. The process allows for a high cyclic capacity while the compounds of the absorbent have a reduced tendency to foaming and low volatility.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: January 7, 2020
    Assignees: BASF SE, ExxonMobil Research and Engineering Company
    Inventors: Thomas Ingram, Gerald Vorberg, Martin Ernst, Carla Pereira, Michael Siskin
  • Publication number: 20190381448
    Abstract: In a process for removal of acid gases from a fluid stream the fluid stream is contacted with an absorbent to obtain a treated fluid stream and a laden absorbent.
    Type: Application
    Filed: February 9, 2018
    Publication date: December 19, 2019
    Inventors: Thomas INGRAM, Martin ERNST, Gerald VORBERG, Alexander PANCHENKO, Sophia EBERT, Thomas Wesley HOLCOMBE, Michael SISKIN, Carla PEREIRA, Georg SIEDER
  • Publication number: 20190143262
    Abstract: A process for removing acid gases from a fluid stream, wherein the fluid stream is contacted with an absorbent comprising a compound of the general formula (I), wherein R1 and R2 are independently C1-C4-alkyl; R3 is selected from hydrogen and C1-C4-alkyl, R4, R5 and R6 are independently selected from hydrogen and C1-C4-alkyl; x and y are integers from 2 to 4 and z is an integer from 1 to 3, to obtain a treated fluid stream and a laden absorbent. The process allows for a high cyclic capacity while the compounds of the absorbent have a reduced tendency to foaming and low volatility.
    Type: Application
    Filed: April 5, 2017
    Publication date: May 16, 2019
    Applicants: BASF SE, ExxonMobil Research and Engineering Company
    Inventors: Thomas INGRAM, Genald VORBERGH, Martin ERNST, Carla PEREIRA, Michael SISKIN
  • Patent number: 10155192
    Abstract: A system and process for selectively separating H2S from a gas mixture which also comprises CO2 is disclosed. A water recycle stream is fed to the absorber in order to create a higher concentration absorbent above the recycle feed and having a greater H2S selectivity at lower acid gas loadings, and a more dilute absorbent below the recycle feed and having a greater H2S selectivity at higher acid gas loadings. Also disclosed is a system and process for selectively separating H2S by utilizing two different absorbents, one absorbent for the upper section of the absorber, tailored to have a greater H2S selectivity at lower acid gas loadings, and a second absorbent for the lower section of the absorber, tailored to have a greater H2S selectivity at higher acid gas loadings.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: December 18, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Carla S. Pereira, Michael Siskin, Himanshu Gupta
  • Patent number: 10053630
    Abstract: A delayed coking process in which shot coke and thermally cracked coker products are produced from a sponge coke- and/or transition coke-forming resid feed comprising sponge coke asphaltenes by mixing heteroatom (preferably nitrogen) containing asphaltenes from a shot coke-forming resid with a heated sponge coke-forming resid to form shot coke directing asphaltene aggregates in the resid. The mixture of resid with the added asphaltene is held at an elevated temperature to allow co-aggregates of sponge coke and shot coke asphaltenes to form which, upon delayed coking promote the production of a free-flowing shot coke product.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: August 21, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael Siskin, Ramesh Varadaraj
  • Publication number: 20180229180
    Abstract: A process for selectively separating H2S from a gas mixture which also comprises CO2 is disclosed. A stream of the gas mixture is contacted with an absorbent solution comprising one or more amines, alkanolamines, hindered alkanolamines, capped alkanolamines, or mixtures thereof. The H2S/CO2 selectivity of the absorbent solution is preferably greater than about 4.0 for an acid gas loading [mol(CO2+H2S)/mol(amine)] between about 0.2 and about 0.6, and is achieved by reducing pH of the absorbent solution.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 16, 2018
    Inventors: Carla S. Pereira, Michael Siskin, Thomas Ingram, Gerald Vorberg, Martin Ernst
  • Patent number: 9962644
    Abstract: A process for selectively separating H2S from a gas mixture which also comprises CO2 is disclosed. A stream of the gas mixture is contacted with an absorbent solution comprising one or more amines, alkanolamines, hindered alkanolamines, capped alkanolamines, or mixtures thereof. The H2S/CO2 selectivity of the absorbent solution is preferably greater than about 4.0 for an acid gas loading [mol(CO2+H2S)/mol(amine)] between about 0.2 and about 0.6, and is achieved by reducing pH of the absorbent solution.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: May 8, 2018
    Assignees: ExxonMobil Research and Engineering Company, BASF
    Inventors: Carla S. Pereira, Michael Siskin, Thomas Ingram, Gerald Vorberg, Martin Ernst
  • Publication number: 20170348630
    Abstract: A system and process for selectively separating H2S from a gas mixture which also comprises CO2 is disclosed. A water recycle stream is fed to the absorber in order to create a higher concentration absorbent above the recycle feed and having a greater H2S selectivity at lower acid gas loadings, and a more dilute absorbent below the recycle feed and having a greater H2S selectivity at higher acid gas loadings. Also disclosed is a system and process for selectively separating H2S by utilizing two different absorbents, one absorbent for the upper section of the absorber, tailored to have a greater H2S selectivity at lower acid gas loadings, and a second absorbent for the lower section of the absorber, tailored to have a greater H2S selectivity at higher acid gas loadings.
    Type: Application
    Filed: June 1, 2016
    Publication date: December 7, 2017
    Inventors: Carla S. Pereira, Michael Siskin, Himanshu Gupta
  • Patent number: 9713788
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios>0.5:1 (approaching 1:1) may be achieved.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 25, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David Charles Calabro, Lisa Saunders Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis George Peiffer, Quanchang Li
  • Patent number: 9707512
    Abstract: Promoter amines are used to enhance CO2 uptake by sterically hindered or tertiary amines. The promoter amines can be cyclic amines, including aromatic cyclic amines or bridged cyclic amines. The combination of a promoter amine plus a sterically hindered or tertiary amines allows for improved uptake kinetics while reducing or minimizing the amount of formation of carbamate salts. The promoted sterically hindered or tertiary amines can be used as part of a CO2 capture and release system that involves a phase transition from a solution of amine-CO2 products to a slurry of amine-CO2 precipitate solids.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: July 18, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Pavel Kortunov, Michael Siskin
  • Publication number: 20170182455
    Abstract: A process for selectively separating H2S from a gas mixture which also comprises CO2 is disclosed. A stream of the gas mixture is contacted with an absorbent solution comprising one or more amines, alkanolamines, hindered alkanolamines, capped alkanolamines, or mixtures thereof. The H2S/CO2 selectivity of the absorbent solution is preferably greater than about 4.0 for an acid gas loading [mol(CO2+H2S)/mol(amine)] between about 0.2 and about 0.6, and is achieved by reducing pH of the absorbent solution.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 29, 2017
    Inventors: Carla S. Pereira, Michael Siskin, Thomas Ingram, Gerald Vorberg, Martin Ernst
  • Patent number: 9458367
    Abstract: A liquid aminoether acid gas absorbent which is subject to freezing in a cold climatic zone though which the aminoether is to be shipped is rendered freeze-resistant by mixing the aminoether with water prior to transport through the cold climatic zone; the aminoether/water mixture typically contains 10 to 40 weight percent water, based on the weight of the aminoether. The aminoether/water mixture can also be stored in the cold climatic zone without being externally maintained at a temperature above the inherent freezing point of the aminoether.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 4, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Robert Basil Fedich, Michel Daage
  • Patent number: 9376756
    Abstract: Aminoethers are used as corrosion inhibitors in boiler systems in which a working fluid comprising water with an aminoether corrosion inhibitor is circulated from a heater to a utilization site at which the working fluid gives up energy and decreases in temperature. A preferred class of aminoethers are the alkoxytriethyleneglycol-tert-alkylamines such as methoxy triethyleneglycol-tert-butylamine.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: June 28, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael Siskin, Robert Basil Fedich, Michel A. Daage
  • Publication number: 20160158691
    Abstract: Methods for separating carbon dioxide from a gas stream are described. The methods include (a) providing a stream having a gas therein; and (b) contacting the stream with a sorption composition thereby removing at least a portion of the gas from the stream. The sorption composition includes a solid support, a linking moiety, and a gas-capture moiety or a reaction product thereof; wherein the gas-capture moiety has a formula according to Formula (I): wherein R1 to R3 may be the same or different and are selected from H or hydrocarbyl (e.g.
    Type: Application
    Filed: November 10, 2015
    Publication date: June 9, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Pavel Kortunov, Michael Siskin
  • Patent number: 9272242
    Abstract: A high cyclic capacity carbon dioxide scrubbing process contacts a gas stream containing carbon dioxide in a sorption zone with a liquid scrubbing solution of a low molecular weight sterically hindered amine, particularly a secondary alkanolamine or aminoether at a high concentration, typically at least 3.5M and at a temperature of at least 30° C. to sorb the carbon dioxide into the solution and form a rich stream of the sorbed carbon dioxide in the solution in the form of dissolved amine carbamate and/or alkanolamine bicarbonate. The rich stream is then passed from the sorption zone to at least one regeneration zone and the sorbed carbon dioxide is desorbed as gas from the solution to form a lean solution containing a reduced concentration of sorbed carbon dioxide relative to the rich stream; the lean stream is then returned to the sorption zone for a further sorption cycle.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: March 1, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Michael Siskin, Hans Thomann
  • Publication number: 20160038872
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios >0.5:1 (approaching 1:1) may be achieved.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 11, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: David Charles CALABRO, Lisa Saunders Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis George Peiffer, Quanchang Li
  • Publication number: 20150329784
    Abstract: A delayed coking process in which shot coke and thermally cracked coker products are produced from a sponge coke- and/or transition coke-forming resid feed comprising sponge coke asphaltenes by mixing heteroatom (preferably nitrogen) containing asphaltenes from a shot coke-forming resid with a heated sponge coke-forming resid to form shot coke directing asphaltene aggregates in the resid. The mixture of resid with the added asphaltene is held at an elevated temperature to allow co-aggregates of sponge coke and shot coke asphaltenes to form which, upon delayed coking promote the production of a free-flowing shot coke product.
    Type: Application
    Filed: April 28, 2015
    Publication date: November 19, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael SISKIN, Ramesh VARADARAJ
  • Patent number: 9186617
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios >0.5:1 (approaching 1:1) may be achieved.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 17, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David C. Calabro, Lisa S. Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis G. Peiffer, Quanchang Li
  • Patent number: 9186616
    Abstract: Ionic liquids containing a cation with a potentially nucleophilic carbon atom bearing a relatively acidic hydrogen atom bonded to a potentially nucleophilic carbon atom, typically in the conjugated —NC(H)N— structure or a —NC(H)S— structure of imidazolium, imidazolidinium or thiazolium salts, can be capable of acting as sorbents for CO2 in cyclic separation processes. The ionic liquid may be used on its own, mixed with a solvent, preferably an aprotic, polar, non-aqueous solvent such as toluene, DMSO, NMP or sulfolane, or in conjunction with a non-nucleophilic nitrogenous base promoter compound having a pKa of at least 10.0 such as a carboxamidine or a guanidine.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 17, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lisa S. Baugh, Pavel Kortunov, Michael Siskin