Patents by Inventor Michael Siskin

Michael Siskin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170182455
    Abstract: A process for selectively separating H2S from a gas mixture which also comprises CO2 is disclosed. A stream of the gas mixture is contacted with an absorbent solution comprising one or more amines, alkanolamines, hindered alkanolamines, capped alkanolamines, or mixtures thereof. The H2S/CO2 selectivity of the absorbent solution is preferably greater than about 4.0 for an acid gas loading [mol(CO2+H2S)/mol(amine)] between about 0.2 and about 0.6, and is achieved by reducing pH of the absorbent solution.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 29, 2017
    Inventors: Carla S. Pereira, Michael Siskin, Thomas Ingram, Gerald Vorberg, Martin Ernst
  • Patent number: 9458367
    Abstract: A liquid aminoether acid gas absorbent which is subject to freezing in a cold climatic zone though which the aminoether is to be shipped is rendered freeze-resistant by mixing the aminoether with water prior to transport through the cold climatic zone; the aminoether/water mixture typically contains 10 to 40 weight percent water, based on the weight of the aminoether. The aminoether/water mixture can also be stored in the cold climatic zone without being externally maintained at a temperature above the inherent freezing point of the aminoether.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 4, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Robert Basil Fedich, Michel Daage
  • Patent number: 9376756
    Abstract: Aminoethers are used as corrosion inhibitors in boiler systems in which a working fluid comprising water with an aminoether corrosion inhibitor is circulated from a heater to a utilization site at which the working fluid gives up energy and decreases in temperature. A preferred class of aminoethers are the alkoxytriethyleneglycol-tert-alkylamines such as methoxy triethyleneglycol-tert-butylamine.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: June 28, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael Siskin, Robert Basil Fedich, Michel A. Daage
  • Publication number: 20160158691
    Abstract: Methods for separating carbon dioxide from a gas stream are described. The methods include (a) providing a stream having a gas therein; and (b) contacting the stream with a sorption composition thereby removing at least a portion of the gas from the stream. The sorption composition includes a solid support, a linking moiety, and a gas-capture moiety or a reaction product thereof; wherein the gas-capture moiety has a formula according to Formula (I): wherein R1 to R3 may be the same or different and are selected from H or hydrocarbyl (e.g.
    Type: Application
    Filed: November 10, 2015
    Publication date: June 9, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Pavel Kortunov, Michael Siskin
  • Patent number: 9272242
    Abstract: A high cyclic capacity carbon dioxide scrubbing process contacts a gas stream containing carbon dioxide in a sorption zone with a liquid scrubbing solution of a low molecular weight sterically hindered amine, particularly a secondary alkanolamine or aminoether at a high concentration, typically at least 3.5M and at a temperature of at least 30° C. to sorb the carbon dioxide into the solution and form a rich stream of the sorbed carbon dioxide in the solution in the form of dissolved amine carbamate and/or alkanolamine bicarbonate. The rich stream is then passed from the sorption zone to at least one regeneration zone and the sorbed carbon dioxide is desorbed as gas from the solution to form a lean solution containing a reduced concentration of sorbed carbon dioxide relative to the rich stream; the lean stream is then returned to the sorption zone for a further sorption cycle.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: March 1, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Michael Siskin, Hans Thomann
  • Publication number: 20160038872
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios >0.5:1 (approaching 1:1) may be achieved.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 11, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: David Charles CALABRO, Lisa Saunders Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis George Peiffer, Quanchang Li
  • Publication number: 20150329784
    Abstract: A delayed coking process in which shot coke and thermally cracked coker products are produced from a sponge coke- and/or transition coke-forming resid feed comprising sponge coke asphaltenes by mixing heteroatom (preferably nitrogen) containing asphaltenes from a shot coke-forming resid with a heated sponge coke-forming resid to form shot coke directing asphaltene aggregates in the resid. The mixture of resid with the added asphaltene is held at an elevated temperature to allow co-aggregates of sponge coke and shot coke asphaltenes to form which, upon delayed coking promote the production of a free-flowing shot coke product.
    Type: Application
    Filed: April 28, 2015
    Publication date: November 19, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael SISKIN, Ramesh VARADARAJ
  • Patent number: 9186618
    Abstract: Ionic liquids are capable of acting as solvents for amine CO2 absorbent compounds in CO2 separation processes and when so used enhance the sorption of the CO2 by the amine. A cyclic sorption process for separating CO2 from a gas stream, such as flue gas or natural gas, brings the gas stream into contact with an absorbent solution of an amine CO2 sorbent in an ionic liquid solvent followed by desorbing the CO2 to regenerate the amine.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 17, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Lisa S. Baugh, Pavel Kortunov, David C. Calabro, Michael Siskin
  • Patent number: 9186617
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios >0.5:1 (approaching 1:1) may be achieved.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 17, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David C. Calabro, Lisa S. Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis G. Peiffer, Quanchang Li
  • Patent number: 9186616
    Abstract: Ionic liquids containing a cation with a potentially nucleophilic carbon atom bearing a relatively acidic hydrogen atom bonded to a potentially nucleophilic carbon atom, typically in the conjugated —NC(H)N— structure or a —NC(H)S— structure of imidazolium, imidazolidinium or thiazolium salts, can be capable of acting as sorbents for CO2 in cyclic separation processes. The ionic liquid may be used on its own, mixed with a solvent, preferably an aprotic, polar, non-aqueous solvent such as toluene, DMSO, NMP or sulfolane, or in conjunction with a non-nucleophilic nitrogenous base promoter compound having a pKa of at least 10.0 such as a carboxamidine or a guanidine.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 17, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lisa S. Baugh, Pavel Kortunov, Michael Siskin
  • Publication number: 20150314235
    Abstract: A cyclic process for separating CO2 from a gas stream by contacting the gas stream at a first temperature and typically at a pressure of at least 30 barg with a CO2 sorbent comprising an ionic liquid containing a potentially nucleophilic carbon atom bearing a relatively acidic hydrogen atom bonded to a potentially nucleophilic carbon atom to sorb CO2 into the solution and regenerating the ionic liquid absorbent by treating the sorbent under conditions including a second, typically higher, temperature, to cause desorption of at least a portion of the CO2 and to regenerate the ionic liquid.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 5, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Michael Siskin, Eugene R. Thomas, Hans Thomann
  • Patent number: 9139781
    Abstract: The morphology of petroleum cokes produced by the delayed coking of feeds produced from extra-heavy crude sources such as those from the Venezuela Orinoco Heavy Oil Belt can be controlled to produce a less dense coke which is less likely to inflame in the coke pit or in subsequent handling. An aqueous solution of an alkali metal or alkaline earth metal carbonate salt when added to a feed of this type which would normally produce a dense coke product is effective to produce a quenchable coke product of lower density and higher porosity, usually in compact, granular form permitting it to be readily discharged from the drum.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 22, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Fritz A. Bernatz, Michael Siskin, Christopher P. Eppig, Craig Y. Sabottke, Eric W. Fryatt
  • Patent number: 9057031
    Abstract: A process for the co-gasification of carbonaceous solids (coal, coke) and biomass in which the biomass material is pyrolyzed to provide a biomass pyrolysis oil and biomass char or coke which are then mixed with the carbonaceous solid to form a slurry. This slurry is then heated if necessary to achieve a viscosity which can be processed conveniently in the gasifier. The heat required for pyrolyzing the biomass can conveniently be obtained from the heat exchanger used to cool the hot synthesis gas product emerging from the gasifier.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: June 16, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh Varadaraj, John L. Robbins, Michael Siskin
  • Patent number: 9034288
    Abstract: A CO2 amine scrubbing process uses an absorbent mixture consisting of an alkanolamine CO2 sorbent in combination with a non-nucleophilic base. The alkanolamine has oxygen and nitrogen sites capable of nucleophilic attack at the CO2 carbon atom. The nucleophilic addition is promoted in the presence of the non-nucleophilic, relatively stronger base, acting as a proton acceptor. The non-nucleophilic base promoter, which may also act as a solvent for the alkanolamine, can promote reaction with the CO2 at each of the reactive hydroxyl and nucleophilic amine group(s) of the alkanolamines. In the case of primary amino alkanolamines the CO2 may be taken up by a double carboxylation reaction in which two moles of CO2 are taken up by the reacting primary amine groups.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: May 19, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Lisa S. Baugh, Pavel Kortunov, David C. Calabro, Michael Siskin
  • Patent number: 9028785
    Abstract: A CO2 amine scrubbing process uses an absorbent mixture combination of an amine containing a primary amino group CO2 sorbent in combination with a non-nucleophilic relatively stronger base. The weaker base(s) are nucleophilic and have the ability to react directly with the CO2 in the gas stream while the relatively stronger bases act as non-nucleophilic promoters for the reaction between the CO2 and the weaker base. Two moles of CO2 can be taken up by the primary amine groups in a dicarboxylation reaction, affording the potential for a highly efficient scrubbing process.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: May 12, 2015
    Assignee: Exxonmobil Reseach and Engineering Company
    Inventors: Pavel Kortunov, Lisa S. Baugh, David C. Calabro, Michael Siskin
  • Publication number: 20150027056
    Abstract: A process for increasing the selectivity of an alkanolamine absorption process for selectively removing hydrogen sulfide (H2S) from a gas mixture which also contains carbon dioxide (CO2) and possibly other acidic gases such as COS, HCN, CS2 and sulfur derivatives of C1 to C4 hydrocarbons, comprises contacting the gas mixture with a liquid absorbent which is a severely sterically hindered capped alkanolamine. The improvement in selectivity is achieved at the high(er) pressures, typically least about 10 bara at conditions nearing the H2S/CO2 equilibrium at which CO2 begins to displace absorbed hydrosulfide species from the absorbent solution.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 29, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Pavel Kortunov, Michael Siskin, Robert B. Fedich
  • Publication number: 20150027055
    Abstract: A process for increasing the selectivity of an alkanolamine absorption process for selectively removing hydrogen sulfide (H2S) from a gas mixture which also contains carbon dioxide (CO2) and possibly other acidic gases such as COS, HCN, CS2 and sulfur derivatives of C1 to C4 hydrocarbons, comprises contacting the gas mixture with a liquid absorbent which is a severely sterically hindered capped alkanolamine or more basic sterically hindered secondary and tertiary amine. The improvement in selectivity is achieved at the high(er) pressures, typically least about 10 bara at conditions nearing the H2S/CO2 equilibrium at which CO2 begins to displace absorbed hydrosulfide species from the absorbent solution.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 29, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Michael Siskin, Robert B. Fedich
  • Publication number: 20140255250
    Abstract: Aminoethers are used as corrosion inhibitors in boiler systems in which a working fluid comprising water with an aminoether corrosion inhibitor is circulated from a heater to a utilization site at which the working fluid gives up energy and decreases in temperature.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Robert Basil Fedich, Michel A. Daage
  • Publication number: 20140205525
    Abstract: Promoter amines are used to enhance CO2 uptake by sterically hindered or tertiary amines. The promoter amines can be cyclic amines, including aromatic cyclic amines or bridged cyclic amines. The combination of a promoter amine plus a sterically hindered or tertiary amines allows for improved uptake kinetics while reducing or minimizing the amount of formation of carbamate salts. The promoted sterically hindered or tertiary amines can be used as part of a CO2 capture and release system that involves a phase transition from a solution of amine-CO2 products to a slurry of amine-CO2 precipitate solids.
    Type: Application
    Filed: November 21, 2013
    Publication date: July 24, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Michael Siskin
  • Patent number: 8771594
    Abstract: Aminoethers are used as corrosion inhibitors in boiler systems in which a working fluid comprising water with an aminoether corrosion inhibitor is circulated from a heater to a utilization site at which the working fluid gives up energy and decreases in temperature. A preferred class of aminoethers are the alkoxytriethyleneglycol-tert-alkylamines such as methoxy triethyleneglycol-tert-butylamine.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: July 8, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Robert B. Fedich, Michel A. Daage