Patents by Inventor Michael Trainer

Michael Trainer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7471393
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: December 30, 2008
    Inventor: Michael Trainer
  • Publication number: 20080218738
    Abstract: An instrument for measuring the size and characteristics of a particle contained in a sample of particles. A particle sample is introduced into a sample chamber. The sample particles are subjected to centrifugal forces so that large particles travel in the sample chamber at velocities greater than small particles. Light is shown upon the particles as they travel in the sample chamber. The particles diffract the light. The diffracted light is then received by detectors that convert the diffracted light into corresponding electronic signals. The electronic signals are analyzed to determine the size and characteristics of the particles that caused the diffracted light.
    Type: Application
    Filed: October 31, 2007
    Publication date: September 11, 2008
    Inventor: Michael Trainer
  • Publication number: 20080221711
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Application
    Filed: October 26, 2007
    Publication date: September 11, 2008
    Inventor: Michael Trainer
  • Publication number: 20080221814
    Abstract: An instrument for measuring the size and characteristics of a particle contained in a sample of particles. A particle sample is introduced into a sample chamber. The sample particles are subjected to centrifugal forces so that large particles travel in the sample chamber at velocities greater than small particles. Light is shown upon the particles as they travel in the sample chamber. The particles diffract the light. The diffracted light is then received by detectors that convert the diffracted light into corresponding electronic signals. The electronic signals are analyzed to determine the size and characteristics of the particles that caused the diffracted light.
    Type: Application
    Filed: October 30, 2007
    Publication date: September 11, 2008
    Inventor: Michael Trainer
  • Publication number: 20080204716
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Application
    Filed: October 25, 2007
    Publication date: August 28, 2008
    Inventor: Michael Trainer
  • Publication number: 20080204718
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Application
    Filed: October 26, 2007
    Publication date: August 28, 2008
    Inventor: Michael Trainer
  • Publication number: 20080204717
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Application
    Filed: October 25, 2007
    Publication date: August 28, 2008
    Inventor: Michael Trainer
  • Publication number: 20080204719
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Application
    Filed: October 26, 2007
    Publication date: August 28, 2008
    Inventor: Michael Trainer
  • Publication number: 20080208511
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Application
    Filed: October 25, 2007
    Publication date: August 28, 2008
    Inventor: Michael Trainer
  • Publication number: 20070242269
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Application
    Filed: October 4, 2006
    Publication date: October 18, 2007
    Inventor: Michael Trainer
  • Publication number: 20070206203
    Abstract: An instrument for measuring the size and characteristics of a particle contained in a sample of particles. A particle sample is introduced into a sample chamber. The sample particles are subjected to centrifugal forces so that large particles travel in the sample chamber at velocities greater than small particles. Light is shown upon the particles as they travel in the sample chamber. The particles diffract the light. The diffracted light is then received by detectors that convert the diffracted light into corresponding electronic signals. The electronic signals are analyzed to determine the size and characteristics of the particles that caused the diffracted light.
    Type: Application
    Filed: April 9, 2005
    Publication date: September 6, 2007
    Inventor: Michael Trainer
  • Publication number: 20070165225
    Abstract: An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range.
    Type: Application
    Filed: March 7, 2005
    Publication date: July 19, 2007
    Inventor: Michael Trainer
  • Publication number: 20060094109
    Abstract: In patients with carcinomas tumor cells are shed into the blood, enumeration and characterization of these cells offers the opportunity to obtain a “real time” biopsy of the tumor and may improve the management of the disease. The frequency of circulating tumor cells is rare (<1 cell/ml) and technology is needed that has sufficient sensitivity and specificity to enumerate and characterize these cells. The present system was developed to provide an immunophenotype, fluorescence wave forms as well as images of immunomagnetically enriched cells. Blood volumes ranging from 7.5-30 ml are immunomagnetically enriched for epithelial cells. The sample volume is reduced to 320 ?l and inserted into an analysis chamber. Upon introduction of the chamber in a magnetic field, the immunomagnetically tagged cells rise out of the sample and align between nickel lines (period 30 ?m, space 15 ?m) that are present on the viewing surface of the chamber.
    Type: Application
    Filed: November 2, 2004
    Publication date: May 4, 2006
    Inventor: Michael Trainer