Patents by Inventor Michael W. Lynch

Michael W. Lynch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8202952
    Abstract: A process for making an ethylene homopolymer in the presence of an oxide-supported chromium catalyst is disclosed. A small amount of an ?-olefin contacted with the catalyst before polymerizing ethylene or introduced into an ethylene homopolymerization unexpectedly boosts process productivity. When used at part per million levels, the ?-olefin improves productivity while maintaining desirable polymer properties. The invention is particularly valuable for making HDPE resins useful for blow molding applications.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 19, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Mark K. Reinking
  • Publication number: 20120116022
    Abstract: A high-temperature solution process for making an ethylene polymer blend having a controlled degree of long-chain branching is disclosed. Ethylene is polymerized in the presence of a first Ziegler-Natta catalyst comprising titanium, magnesium, and aluminum in the absence of hydrogen to produce a first ethylene polymer component having substantial long-chain branching. A second ethylene polymer component having little or no long-chain branching is also prepared. Both polymerizations are performed at a temperature from 140° C. to 250° C. The first and second ethylene polymer components are combined to give a polymer blend. The degree of long-chain branching in the blend is controlled by adjusting the relative amounts of the first and second ethylene polymer components. The invention enables the preparation of valuable products having a pre-determined degree of long-chain branching using readily available Zeigler-Natta catalysts, commercially practiced techniques, and conventional equipment.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Inventors: Michael W. Lynch, Kenneth J. Klug
  • Patent number: 7858718
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-aryl-8-anilinoquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: December 28, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Michael W. Lynch
  • Publication number: 20100129581
    Abstract: A process for making an ethylene homopolymer in the presence of an oxide-supported chromium catalyst is disclosed. A small amount of an ?-olefin contacted with the catalyst before polymerizing ethylene or introduced into an ethylene homopolymerization unexpectedly boosts process productivity. When used at part per million levels, the ?-olefin improves productivity while maintaining desirable polymer properties. The invention is particularly valuable for making HDPE resins useful for blow molding applications.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Inventors: Michael W. Lynch, Mark K. Reinking
  • Publication number: 20100113715
    Abstract: A multi-reactor solution process for polymerizing ethylene is disclosed. Ethylene is polymerized in a first reaction zone in two parallel reactors and the polyethylene is transferred to a second reaction zone to continue or complete the polymerization. Ethylene is contacted with a mixture of a titanium halide and a vanadium halide in the first parallel reactor and with a magnesium-titanium based Ziegler-Natta catalyst at a lower temperature in the second parallel reactor. The process gives improved catalyst activity.
    Type: Application
    Filed: November 4, 2008
    Publication date: May 6, 2010
    Inventor: Michael W. Lynch
  • Patent number: 7666960
    Abstract: A process for the copolymerization of ethylene and ?-olefins which utilizes a mixed modifier comprised of a conjugated diene and alkoxysilane is disclosed.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: February 23, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Mark K. Reinking
  • Publication number: 20090048402
    Abstract: A process to prepare a multimodal polyethylene with controlled LCB distribution is disclosed. In the first stage, ethylene is polymerized in the presence of a Ziegler catalyst that results in a homopolyethylene component having a higher LCB concentration. In the second stage, ethylene is copolymerized with a 1-olefin in the presence of the Ziegler catalyst and a lower concentration of hydrogen resulting in a copolymer component with a lower LCB concentration. The homopolyethylene component and the copolymer component are combined to form a novel multimodal polyethylene.
    Type: Application
    Filed: August 17, 2007
    Publication date: February 19, 2009
    Inventors: Michael W. Lynch, Mark K. Reinking
  • Publication number: 20080300370
    Abstract: A process for preparing a polyethylene in a multi-stage process is described. The process comprises pre-treating a Ziegler catalyst in a first stage in the presence of a 1-olefin/ethylene mixture or a 1-olefin to produce a LLDPE or VLDPE, which have the characteristics of a polymer prepared with a single-site catalyst, e.g. high levels of short-chain branching that are uniformly distributed. The contents of the first stage are then transferred to a second stage where an ethylene or an ethylene/1-olefin mixture is polymerized in the presence of the pre-treated catalyst to form a polyethylene with good processability.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 4, 2008
    Inventors: Michael W. Lynch, Craig C. Meverden
  • Patent number: 7314545
    Abstract: This invention is a method of purifying fuels containing organosulfur impurities. The fuel is oxidized with an organic hydroperoxide in the presence of an oxidation catalyst to form a sulfone product, followed by extraction of the sulfone product by solid-liquid or liquid-liquid extraction. The fuel is then contacted with a decomposition catalyst to remove the residual organic hydroperoxide from the fuel.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: January 1, 2008
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Lawrence J. Karas, Roger A. Grey, Michael W. Lynch
  • Patent number: 7230054
    Abstract: Resins comprising a relatively high-density, low-molecular-weight polyethylene component and a relatively low-density, high-molecular-weight ethylene copolymer component and methods of making the resins are disclosed. The rheological polydispersity of the high-density component exceeds that of either the resin or the low-density component. The resins are valuable for making films, sheets, coatings, pipes, fibers, and molded articles having a favorable balance of good stiffness and excellent environmental stress crack resistance.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 12, 2007
    Assignee: Equistar Chemicals, LP
    Inventors: Harilaos Mavridis, Sameer D. Mehta, Mark P. Mack, Philip J. Garrison, Michael W. Lynch
  • Patent number: 6933354
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6908972
    Abstract: A method for making ethylene polymers and copolymers is disclosed. The method uses a catalyst system comprising a low level of an aluminum-containing activator, a bridged indenoindolyl transition metal complex, and a treated silica support. The method enables economical preparation of ethylene copolymers having very low density. The silica-supported, bridged complexes incorporate comonomers efficiently and are valuable for a commercial slurry loop process. Use of a bridged indeno[2,1-b]indolyl complex provides exceptionally efficient comonomer incorporation, and gives polymers with a substantial and controlled level of long-chain branching. The method facilitates the production of a wide variety of polyolefins, from HDPE to plastomers.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: June 21, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Barbara M. Tsuie, Karen L. Neal-Hawkins, Sandor Nagy, Michael W. Lynch, Mark P. Mack, Shaotian Wang, Jean A Merrick-Mack, Clifford C. Lee, Joel A. Mutchler, Kenneth W. Johnson
  • Publication number: 20040249093
    Abstract: The present invention provides a method of forming a polyolefin resin having a relatively high densities and a long chain branch index (“LCB”) greater than about 1. The method of the invention comprises forming a reaction mixture by combining molecular hydrogen, a first olefin, an optional second olefin, a diluent, and a vanadium-containing catalyst system at a sufficient temperature to allow formation of the polyolefin resin and initiating polymerization of the reaction mixture.
    Type: Application
    Filed: June 9, 2003
    Publication date: December 9, 2004
    Inventors: Michael W. Lynch, Manivakkam J. Shankernarayanan
  • Patent number: 6812304
    Abstract: A process for preparing premixed supported boraaryl catalysts having improved shelf life is provided. The process comprises supporting an organometallic compound comprising a group 3-10 transition metal or lanthanide metal and at least one boraaryl ligand an inorganic support which has been chemically and thermally dehydroxylated to remove all hydroxyl from the surface of the support; contacting with an organoaluminum compound utilizing an incipient wetness procedure wherein 90 to 150 percent of the catalyst pore volume is filled with a hydrocarbon solution containing the organoaluminum and provide a molar ratio of aluminum to transition/lanthanide metal of 0.5:1 to 50:1; and recovering the premixed catalyst powder.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: November 2, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Craig C. Meverden, Michael W. Lynch
  • Publication number: 20040181017
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst-systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 16, 2004
    Applicant: EQUISTAR CHEMICALS, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6762255
    Abstract: Prealkylation of a supported catalyst system comprising a transition metal or inner transition metal complex precatalyst and a bulky, non-coordinating anion on an inorganic support by treatment with a solution of metal alkyl in a ratio of metal of metal alkyl to transition metal or inner transition metal of precatalyst less than 20:1, and in an amount of solution insufficient to form a paste or dispersion provides supported catalysts of high olefin polymerization activity which promote production of polyolefins of low polydispersity and improved morphology.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: July 13, 2004
    Assignee: Equistar Chemicals L.P.
    Inventors: Craig C. Meverden, Michael W. Lynch
  • Patent number: 6759361
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 6, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Publication number: 20040010105
    Abstract: A slurry ethylene polymerization process is disclosed. The process uses an unsupported late transition metal catalyst that comprises an acenaphthene N,N′-bis(arylimine) ligand. The process is conducted in the presence of a non-aromatic hydrocarbon diluent. The process produces polyethylene having high molecular weight in powder form and it gives high catalyst activity at relatively high temperatures.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 15, 2004
    Inventors: Linda N. Winslow, Michael W. Lynch
  • Publication number: 20030228971
    Abstract: Prealkylation of a supported catalyst system comprising a transition metal or inner transition metal complex precatalyst and a bulky, non-coordinating anion on an inorganic support by treatment with a solution of metal alkyl in a ratio of metal of metal alkyl to transition metal or inner transition metal of precatalyst less than 20:1, and in an amount of solution insufficient to form a paste or dispersion provides supported catalysts of high olefin polymerization activity which promote production of polyolefins of low polydispersity and improved morphology.
    Type: Application
    Filed: June 6, 2002
    Publication date: December 11, 2003
    Applicant: EQUISTAR CHEMICALS L.P.
    Inventors: Craig C. Meverden, Michael W. Lynch
  • Publication number: 20030195306
    Abstract: A method for making ethylene polymers and copolymers is disclosed. The method uses a catalyst system comprising a low level of an aluminum-containing activator, a bridged indenoindolyl transition metal complex, and a treated silica support. The method enables economical preparation of ethylene copolymers having very low density. The silica-supported, bridged complexes incorporate comonomers efficiently and are valuable for a commercial slurry loop process. Use of a bridged indeno[2,1-b]indolyl complex provides exceptionally efficient comonomer incorporation, and gives polymers with a substantial and controlled level of long-chain branching. The method facilitates the production of a wide variety of polyolefins, from HDPE to plastomers.
    Type: Application
    Filed: April 16, 2002
    Publication date: October 16, 2003
    Inventors: Barbara M. Tsuie, Karen L. Neal-Hawkins, Sandor Nagy, Michael W. Lynch, Mark P. Mack, Shaotian Wang, Jean A. Merrick-Mack, Clifford C. Lee, Joel A. Mutchler, Kenneth W. Johnson