Patents by Inventor Michael W. Rawlins

Michael W. Rawlins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9768733
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: September 19, 2017
    Assignee: Parker Vision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9350591
    Abstract: Methods for down converting a modulated carrier signal to a demodulated baseband signal are described herein. The method requires that a first portion of energy is transferred from the modulated carrier signal, and stored at a first storage device when a first switch is on. At least some of the energy stored in the first storage device is discharged when the first switch is off. The method further comprises transferring a second portion of energy from the modulated carrier signal, storing at a second storage device the second portion of transferred energy when a second switch is on, and discharging at least some of the energy stored in the second storage device when the second switch is off.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: May 24, 2016
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9288100
    Abstract: Methods for down converting a modulated carrier signal to a demodulated baseband signal are described herein. The method requires that a first portion of energy is transferred from the modulated carrier signal, and stored at a first storage device when a first switch is on. At least some of the energy stored in the first storage device is discharged when the first switch is off. The method further comprises transferring a second portion of energy from the modulated carrier signal, storing at a second storage device the second portion of transferred energy when a second switch is on, and discharging at least some of the energy stored in the second storage device when the second switch is off.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: March 15, 2016
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9246736
    Abstract: Methods, systems, and apparatuses for down converting a modulated carrier signal to a demodulated baseband signal are described herein. A first switch is controlled with a first control signal Which comprises a first sampling aperture with a specified frequency, wherein the first switch is on during the first sampling aperture and wherein the first switch is off outside the first sampling aperture. A second switch is controlled with a second control signal which comprises a second sampling aperture and wherein the second switch is off outside the second sampling aperture. The first and second control signals each control a charging and discharging cycle of a respective energy storage element so that for each switch a portion of energy is transferred to the respective energy storage element when the respective switch is on during the charging cycle, and a portion of previously transferred energy is discharged during the discharging cycle for each respective switch when the switch is off.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: January 26, 2016
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9246737
    Abstract: Methods, systems, and apparatus for down converting a modulated carrier signal to a demodulated baseband signal are described herein. A first switch is controlled with a first control signal which comprises a first sampling aperture with a specified frequency, wherein the first switch is on during the first sampling aperture and wherein the first switch is off outside the first sampling aperture. A second switch is controlled with a second control signal which comprises a second sampling aperture with a specified frequency, wherein the second switch is on during the second sampling aperture and wherein the second switch is off outside the second sampling aperture.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: January 26, 2016
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20150341196
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc.) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Application
    Filed: July 31, 2015
    Publication date: November 26, 2015
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9197163
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: November 24, 2015
    Assignee: ParkVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9197164
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: November 24, 2015
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20150312085
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc.) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Application
    Filed: March 5, 2015
    Publication date: October 29, 2015
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20150312084
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc.) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Application
    Filed: March 5, 2015
    Publication date: October 29, 2015
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9166528
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: October 20, 2015
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9143088
    Abstract: A circuit is provided comprising detector circuitry, calculating circuitry, and determining circuitry. The detector circuitry is figured to generate an I data signal magnitude value of a sampled I data signal and a Q data signal magnitude value of a sampled Q data signal. The calculating circuitry is configured to calculate a phase shift angle ?I between first and second equal and constant or substantially equal and constant envelope constituents of the sampled I data signal and to calculate a phase shift angle ?Q between first and second substantially equal and substantially constant envelope constituents of the sampled Q data signal. The determining circuitry is configured to determine in-phase and quadrature amplitude information of the substantially equal and substantially constant envelope constituents of the sampled I signal and to determine in-phase and quadrature amplitude information of the first and second substantially equal and substantially constant envelope constituents of the sampled Q signal.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: September 22, 2015
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20150244551
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc.) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Application
    Filed: March 5, 2015
    Publication date: August 27, 2015
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9118528
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: August 25, 2015
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9106500
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 11, 2015
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20150117565
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20150084700
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: October 27, 2014
    Publication date: March 26, 2015
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20150087251
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Inventors: David F. SORRELLS, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8913974
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: December 16, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8913691
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: December 16, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins