Patents by Inventor Michael W. Rawlins

Michael W. Rawlins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8884694
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: November 11, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20140315503
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: May 2, 2014
    Publication date: October 23, 2014
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20140308913
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
    Type: Application
    Filed: October 14, 2013
    Publication date: October 16, 2014
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Jonathan S. Jensen, Martin R. Johnson, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins, Robert T. Short, Jamison L. Young
  • Publication number: 20140308911
    Abstract: Methods, systems, and apparatuses for down-converting and up-converting an electromagnetic signal. In embodiments, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In embodiments, up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used in the frequency modulation or phase modulation implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate a bias signal. The output of the switch is filtered, and the desired harmonic is output.
    Type: Application
    Filed: November 8, 2013
    Publication date: October 16, 2014
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20140241464
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 28, 2014
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20140233670
    Abstract: A balanced transmitter up-converts I and Q baseband signals directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the I and Q baseband signals in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the I and Q baseband signals. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Application
    Filed: November 15, 2013
    Publication date: August 21, 2014
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, JR., Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20140226768
    Abstract: Methods and apparatuses for reducing DC offsets in a communication system are described. In a first aspect, a feedback loop circuit reduces DC offset in a wireless local area network (WLAN) receiver channel. The frequency response of the feedback loop circuit can be variable. In a second aspect, a circuit provides gain control in a WLAN receiver channel. The stored DC offset is subtracted from the receiver channel. First and second automatic gain control (AGC) amplifiers are coupled in respective portions of the receiver channel. In a third aspect, a feedback loop circuit reduces DC offset in a WLAN receiver channel. The feedback loop circuit includes a storage element that samples and stores receiver channel DC offset. The loop is opened, and the DC offset stored in the storage element is subtracted from the receiver channel. Circuits for monitoring DC offset, and for providing control signals for controlling the frequency response of the DC offset reducing circuits are also provided.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 14, 2014
    Applicant: PARKERVISION, INC.
    Inventors: Gregory S. Rawlins, Kevin Brown, Michael W. Rawlins, David F. Sorrells
  • Publication number: 20140226751
    Abstract: A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 14, 2014
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8781418
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 15, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20140187184
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 3, 2014
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20140062574
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: August 21, 2013
    Publication date: March 6, 2014
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8660513
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a hasehand information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: February 25, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8639196
    Abstract: A circuit is provided comprising detector circuitry, calculating circuitry, and determining circuitry. The detector circuitry is figured to generate an I data signal magnitude value of a sampled I data signal and a Q data signal magnitude value of a sampled Q data signal. The calculating circuitry is configured to calculate a phase shift angle ?I between first and second equal and constant or substantially equal and constant envelope constituents of the sampled I data signal and to calculate a phase shift angle ?Q between first and second substantially equal and substantially constant envelope constituents of the sampled Q data signal. The determining circuitry is configured to determine in-phase and quadrature amplitude information of the substantially equal and substantially constant envelope constituents of the sampled I signal and to determine in-phase and quadrature amplitude information of the first and second substantially equal and substantially constant envelope constituents of the sampled Q signal.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 28, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8626093
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 7, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20130328624
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Parker Vision, Inc.
    Inventors: David F. SORRELLS, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8594228
    Abstract: A balanced transmitter up-converts I and Q baseband signals directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the I and Q baseband signals in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains necessary information to reconstruct the I and Q baseband signals. The differential sampling is performed according to control signals that are phase shifted with respect to each other. The control signals may have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: November 26, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8588725
    Abstract: Methods, systems, and apparatuses for down-converting and up-converting an electromagnetic signal. In embodiments, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In embodiments, up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used in the frequency modulation or phase modulation implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate a bias signal. The output of the switch is filtered, and the desired harmonic is output.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 19, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8577313
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: November 5, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8571135
    Abstract: A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 29, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8548093
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals is individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 1, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins