Patents by Inventor Michael Wiltberger

Michael Wiltberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091066
    Abstract: A system for incising tissue with a plasma comprises an elongate electrode configured to incise the tissue along a tissue incision profile and a tissue contact element configured to shape the tissue, which comprises one or more of a channel or a protrusion to form one or more of a corresponding protrusion or indentation in a tissue surface while the tissue is incised with the electrode along the incision profile. The tissue contact element shapes the tissue sufficiently to allow the tissue to form one or more complimentary features along the incision profile when the tissue relaxes to a free-standing configuration with removal of the tissue contact element. The complementary features may be incised into the tissue to provide increased mechanical stability between the separated tissue regions, such as with nominally interlocking protrusion(s) and indentation(s).
    Type: Application
    Filed: May 27, 2022
    Publication date: March 21, 2024
    Applicant: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael WILTBERGER, Phillip GOODING, Dan ANDERSEN
  • Publication number: 20240050276
    Abstract: A method of altering a refractive property of a crosslinked acrylic polymer material by irradiating the material with a high energy pulsed laser beam to change its refractive index. The method is used to alter the refractive property, and hence the optical power, of an implantable intraocular lens after implantation in the patient's eye. In some examples, the wavelength of the laser beam is in the far red and near IR range and the light is absorbed by the crosslinked acrylic polymer via two-photon absorption at high laser pulse energy. The method also includes designing laser beam scan patterns that compensate for effects of multiphone absorption such as a shift in the depth of the laser pulse absorption location, and compensate for effects caused by high laser pulse energy such as thermal lensing. The method can be used to form a Fresnel lens in the optical zone.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 15, 2024
    Inventors: Georg Schuele, Alexander Vankov, Jenny Wang, David A. Dewey, Tianheng Wang, Michael Wiltberger, Mihai State, Phillip Gooding
  • Patent number: 11793675
    Abstract: A method of altering a refractive property of a crosslinked acrylic polymer material by irradiating the material with a high energy pulsed laser beam to change its refractive index. The method is used to alter the refractive property, and hence the optical power, of an implantable intraocular lens after implantation in the patient's eye. In some examples, the wavelength of the laser beam is in the far red and near IR range and the light is absorbed by the crosslinked acrylic polymer via two-photon absorption at high laser pulse energy. The method also includes designing laser beam scan patterns that compensate for effects of multiphone absorption such as a shift in the depth of the laser pulse absorption location, and compensate for effects caused by high laser pulse energy such as thermal lensing. The method can be used to form a Fresnel lens in the optical zone.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: October 24, 2023
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Alexander Vankov, Jenny Wang, David A. Dewey, Tianheng Wang, Michael Wiltberger, Mihai State, Phillip Gooding
  • Publication number: 20230293286
    Abstract: A method of performing laser surgery in a patient's eye includes generating a light beam, deflecting the light beam using a scanner to form an enclosed treatment pattern that is configured to form an enclosed capsulorhexis incision that includes a registration feature, and delivering the enclosed treatment pattern to target tissue in the patient's eye to form in an anterior lens capsule of the patient's eye the enclosed capsulorhexis incision that includes the registration feature. The registration feature is configured so that an edge of the target tissue formed by the enclosed capsulorhexis incision mates with an intraocular lens registration feature on an intraocular lens so as to rotationally register the intraocular lens relative to the registration feature.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 11759310
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: September 19, 2023
    Assignee: AMO Development, LLC
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 11654015
    Abstract: A method of performing laser surgery in a patient's eye includes generating a light beam, deflecting the light beam using a scanner to form an enclosed treatment pattern that is configured to form an enclosed capsulorhexis incision that includes a registration feature, and delivering the enclosed treatment pattern to target tissue in the patient's eye to form in an anterior lens capsule of the patient's eye the enclosed capsulorhexis incision that includes the registration feature. The registration feature is configured so that an edge of the target tissue formed by the enclosed capsulorhexis incision mates with an intraocular lens registration feature on an intraocular lens so as to rotationally register the intraocular lens relative to the registration feature.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: May 23, 2023
    Assignee: AMO Development, LLC
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Publication number: 20230111508
    Abstract: During a process of refractive index modification of an intraocular lens (IOL) using an ophthalmic laser system, optical position monitoring of the IOL is performed by a video camera system viewing the top surface of the IOL. Fiducials are incorporated into the IOL at manufacture, or created in-vivo with laser. The monitoring method employs a defined area of interest (AOI) to limit the number of pixels to be analyzed, to achieve adequately high acquisition speed. In one example, the AOI contains 5 camera scan line segments, each line segment having sufficient pixels to create a stable amplitude signature. Successive frames of the AOI are analyzed to detect movement of the fiducial and/or to determine whether the fiducial has been lost.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 13, 2023
    Inventors: David A. Dewey, Michael Wiltberger, Phillip Gooding, Georg Schuele
  • Patent number: 11612478
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: March 28, 2023
    Assignee: AMO Development, LLC
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 11602459
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 14, 2023
    Assignee: AMO Development, LLC
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Publication number: 20230021864
    Abstract: A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. The optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. In some embodiments, the system includes a video camera with a tunable lens before it to image the entire length of the eye. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system is also provided. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.
    Type: Application
    Filed: October 3, 2022
    Publication date: January 26, 2023
    Inventors: Jenny Wang, Tianheng Wang, David Dewey, Michael Wiltberger, Alexander Vankov, Phillip Gooding, Georg Schuele
  • Patent number: 11534339
    Abstract: During a process of refractive index modification of an intraocular lens (IOL) using an ophthalmic laser system, optical position monitoring of the IOL is performed by a video camera system viewing the top surface of the IOL. Fiducials are incorporated into the IOL at manufacture, or created in-vivo with laser. The monitoring method employs a defined area of interest (AOI) to limit the number of pixels to be analyzed, to achieve adequately high acquisition speed. In one example, the AOI contains 5 camera scan line segments, each line segment having sufficient pixels to create a stable amplitude signature. Successive frames of the AOI are analyzed to detect movement of the fiducial and/or to determine whether the fiducial has been lost.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: December 27, 2022
    Assignee: AMO Development, LLC
    Inventors: David A. Dewey, Michael Wiltberger, Phillip Gooding, Georg Schuele
  • Patent number: 11471328
    Abstract: A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. The optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. In some embodiments, the illumination light source and the scanning mirrors are imaged by the system's objective lens and the patient interface lens to locations near the pupil, to increase the volume of the vitreous humor reachable by the illumination light and laser beam. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system is also provided. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: October 18, 2022
    Assignee: AMO Development, LLC
    Inventors: Jenny Wang, Tianheng Wang, David Dewey, Michael Wiltberger, Alexander Vankov, Phillip Gooding, Georg Schuele
  • Publication number: 20220047424
    Abstract: During a process of refractive index modification of an intraocular lens (IOL) using an ophthalmic laser system, optical position monitoring of the IOL is performed by a video camera system viewing the top surface of the IOL. Fiducials are incorporated into the IOL at manufacture, or created in-vivo with laser. The monitoring method employs a defined area of interest (AOI) to limit the number of pixels to be analyzed, to achieve adequately high acquisition speed. In one example, the AOI contains 5 camera scan line segments, each line segment having sufficient pixels to create a stable amplitude signature. Successive frames of the AOI are analyzed to detect movement of the fiducial and/or to determine whether the fiducial has been lost.
    Type: Application
    Filed: April 9, 2020
    Publication date: February 17, 2022
    Inventors: David A. Dewey, Michael Wiltberger, Phillip Gooding, Georg Schuele
  • Publication number: 20220031504
    Abstract: A method of altering a refractive property of a crosslinked acrylic polymer material by irradiating the material with a high energy pulsed laser beam to change its refractive index. The method is used to alter the refractive property, and hence the optical power, of an implantable intraocular lens after implantation in the patient's eye. In some examples, the wavelength of the laser beam is in the far red and near IR range and the light is absorbed by the crosslinked acrylic polymer via two-photon absorption at high laser pulse energy. The method also includes designing laser beam scan patterns that compensate for effects of multiphone absorption such as a shift in the depth of the laser pulse absorption location, and compensate for effects caused by high laser pulse energy such as thermal lensing. The method can be used to form a Fresnel lens in the optical zone.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 3, 2022
    Inventors: Georg Schuele, Alexander Vankov, Jenny Wang, David A. Dewey, Tianheng Wang, Michael Wiltberger, Mihai State, Phillip Gooding
  • Patent number: 11154424
    Abstract: A method of altering a refractive property of a crosslinked acrylic polymer material by irradiating the material with a high energy pulsed laser beam to change its refractive index. The method is used to alter the refractive property, and hence the optical power, of an implantable intraocular lens after implantation in the patient's eye. In some examples, the wavelength of the laser beam is in the far red and near IR range and the light is absorbed by the crosslinked acrylic polymer via two-photon absorption at high laser pulse energy. The method also includes designing laser beam scan patterns that compensate for effects of multiphone absorption such as a shift in the depth of the laser pulse absorption location, and compensate for effects caused by high laser pulse energy such as thermal lensing. The method can be used to form a Fresnel lens in the optical zone.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: October 26, 2021
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Alexander Vankov, Jenny Wang, David A. Dewey, Tianheng Wang, Michael Wiltberger, Mihai State, Phillip Gooding
  • Publication number: 20210145637
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Application
    Filed: January 27, 2021
    Publication date: May 20, 2021
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Patent number: 10905592
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: February 2, 2021
    Assignee: AMO Development, LLC
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Publication number: 20200261269
    Abstract: A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. The optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. In some embodiments, the illumination light source and the scanning mirrors are imaged by the system's objective lens and the patient interface lens to locations near the pupil, to increase the volume of the vitreous humor reachable by the illumination light and laser beam. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system is also provided. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Inventors: Jenny Wang, Tianheng Wang, David Dewey, Michael Wiltberger, Alexander Vankov, Phillip Gooding, Georg Schuele
  • Publication number: 20200138564
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 7, 2020
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Publication number: 20200129287
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen