Patents by Inventor Michael Wiltberger

Michael Wiltberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200038241
    Abstract: A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. In one embodiment, the system uses a removeable focal point extension assembly to extend the reach of the focal point location of the laser beam to the vitreous humor of the eye. In another embodiment, the optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system uses the focal zone of the optical coherence tomographer beam as a proxy for the focal zone of the femtosecond laser source to. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 6, 2020
    Inventors: Jenny Wang, Tianheng Wang, David Dewey, Michael Wiltberger, Alexander Vankov, Phillip Gooding, Georg Schuele
  • Patent number: 10548716
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: February 4, 2020
    Assignee: OPTIMEDICA CORPORATION
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 10548715
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: February 4, 2020
    Assignee: OPTIMEDICA CORPORATION
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Publication number: 20190307554
    Abstract: A method of altering a refractive property of a crosslinked acrylic polymer material by irradiating the material with a high energy pulsed laser beam to change its refractive index. The method is used to alter the refractive property, and hence the optical power, of an implantable intraocular lens after implantation in the patient's eye. In some examples, the wavelength of the laser beam is in the far red and near IR range and the light is absorbed by the crosslinked acrylic polymer via two-photon absorption at high laser pulse energy. The method also includes designing laser beam scan patterns that compensate for effects of multiphone absorption such as a shift in the depth of the laser pulse absorption location, and compensate for effects caused by high laser pulse energy such as thermal lensing. The method can be used to form a Fresnel lens in the optical zone.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 10, 2019
    Inventors: Georg Schuele, Alexander Vankov, Jenny Wang, David A. Dewey, Tianheng Wang, Michael Wiltberger, Mihai State, Phillip Gooding
  • Patent number: 10434013
    Abstract: One embodiment is directed to a patient interface system for ophthalmic intervention on an eye of a patient, comprising: a housing; an optical lens coupled to the housing and having a focal axis; a eye surface engagement assembly coupled to the housing and comprising an inner seal having an inner seal diameter and being configured to circumferentially engage the eye, an outer seal having an outer seal diameter and being configured to circumferentially engage the eye, and a tissue migration bolster structure configured to be positioned circumferentially between the inner and outer circumferential seals and to prevent migration of tissue of the eye toward the eye surface engagement assembly when a vacuum load is applied within the assembly to cause vacuum engagement of the inner and outer seals against the eye.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: October 8, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Phillip Gooding, Christine Beltran, Michael Wiltberger
  • Publication number: 20190175409
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Patent number: 10206818
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: February 19, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Patent number: 10195017
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: February 5, 2019
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Publication number: 20180360659
    Abstract: A method of performing laser surgery in a patient's eye includes generating a light beam, deflecting the light beam using a scanner to form an enclosed treatment pattern that is configured to form an enclosed capsulorhexis incision that includes a registration feature, and delivering the enclosed treatment pattern to target tissue in the patient's eye to form in an anterior lens capsule of the patient's eye the enclosed capsulorhexis incision that includes the registration feature. The registration feature is configured so that an edge of the target tissue formed by the enclosed capsulorhexis incision mates with an intraocular lens registration feature on an intraocular lens so as to rotationally register the intraocular lens relative to the registration feature.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 20, 2018
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Publication number: 20180271708
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 27, 2018
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Publication number: 20180221202
    Abstract: One embodiment is directed to a patient interface system for ophthalmic intervention on an eye of a patient, comprising: a housing; an optical lens coupled to the housing and having a focal axis; a eye surface engagement assembly coupled to the housing and comprising an inner seal having an inner seal diameter and being configured to circumferentially engage the eye, an outer seal having an outer seal diameter and being configured to circumferentially engage the eye, and a tissue migration bolster structure configured to be positioned circumferentially between the inner and outer circumferential seals and to prevent migration of tissue of the eye toward the eye surface engagement assembly when a vacuum load is applied within the assembly to cause vacuum engagement of the inner and outer seals against the eye.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Inventors: Phillip Gooding, Christine Beltran, Michael Wiltberger
  • Patent number: 10034795
    Abstract: A method of performing laser surgery in a patient's eye includes generating a light beam, deflecting the light beam using a scanner to form an enclosed treatment pattern that is configured to form an enclosed capsulorhexis incision that includes a registration feature, and delivering the enclosed treatment pattern to target tissue in the patient's eye to form in an anterior lens capsule of the patient's eye the enclosed capsulorhexis incision that includes the registration feature. The registration feature is configured so that an edge of the target tissue formed by the enclosed capsulorhexis incision mates with an intraocular lens registration feature on an intraocular lens so as to rotationally register the intraocular lens relative to the registration feature.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: July 31, 2018
    Assignee: OPTIMEDICA CORPORATION
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 9987166
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: June 5, 2018
    Assignee: Optimedica Corporation
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan Talamo
  • Patent number: 9968486
    Abstract: One embodiment is directed to a patient interface system for ophthalmic intervention on an eye of a patient, comprising: a housing; an optical lens coupled to the housing and having a focal axis; a eye surface engagement assembly coupled to the housing and comprising an inner seal having an inner seal diameter and being configured to circumferentially engage the eye, an outer seal having an outer seal diameter and being configured to circumferentially engage the eye, and a tissue migration bolster structure configured to be positioned circumferentially between the inner and outer circumferential seals and to prevent migration of tissue of the eye toward the eye surface engagement assembly when a vacuum load is applied within the assembly to cause vacuum engagement of the inner and outer seals against the eye.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: May 15, 2018
    Assignee: Optimedica Corporation
    Inventors: Phillip Gooding, Christine Beltran, Michael Wiltberger
  • Publication number: 20180085211
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 29, 2018
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Publication number: 20180036117
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Application
    Filed: October 20, 2017
    Publication date: February 8, 2018
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Publication number: 20180000646
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan Talamo
  • Publication number: 20170333180
    Abstract: A system and method for insetting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Application
    Filed: January 24, 2014
    Publication date: November 23, 2017
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 9820848
    Abstract: A system and method for insetting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: November 21, 2017
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 9795472
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: October 24, 2017
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen