Patents by Inventor Michael Ziemkiewicz

Michael Ziemkiewicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11681199
    Abstract: An optical system for receiving light scanned from different light origination locations in space can include a Liquid Crystal (LC) waveguide (LCW), including first and second LCW light ports. A beamsteering LC electrode can be included in or coupled to the LCW and can be configured to vary a receiving direction of light received at the second LCW light port in response to a varying electrical input signal applied to the LC electrode to scan receiving of light at the second LCW light port from different light origination locations in space. A photodetector can be optically coupled to the first LCW light port, such as to detect waveguided light from different light origination locations in space received in response to the varying electrical input signal applied to the first LC electrode. Ranger, bright-spot locking, laser detection, direct detect and coherent lidar, wavelength detection, and other techniques and use cases are possible.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: June 20, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Michael Howard Anderson, Bennett Sodergren, Radhika Marathe
  • Patent number: 11467327
    Abstract: The present disclosure provides numerous applications for the use of liquid crystal polarization gratings (LCPGs) to controllably steer light. When combined with an image sensor, light generated or reflected from different fields of view (FOV) can be steered, allowing an increase in the FOV or the resolution of the image. Further, the LCPG can stabilize the resulting image, counteracting any movement of the image sensor. The combination of LCPGs and liquid crystal waveguides (LCWGs) allows fine deflection control of light (from the LCWG) over a wild field of view (from the LCPG). Further applications of LCPGs include object tracking and the production of depth images using multiple imaging units and independently steered LCPGs. The LCPG may be used in controlling both the projection and reception of light.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: October 11, 2022
    Assignee: Analog Devices International Unlimited Company
    Inventors: Eoin E. English, Andrew William Sparks, Scott Robert Davis, Tyler Adam Dunn, Maurizio Zecchini, Michael Ziemkiewicz, Ronald A. Kapusta, Javier Calpe Maravilla, Paul O'Sullivan, Jonathan Ephraim David Hurwitz, Erik D. Barnes, Monica Redon Segrera, Krystian Balicki
  • Patent number: 11378689
    Abstract: A light detection and ranging (LIDAR) system comprises a laser diode; a laser diode driver circuit configured generate a laser beam using the laser diode and to frequency chirp the generated laser beam according to a frequency chirp period; a laser splitter to split the generated laser beam into N transmit laser beams pointed at different angles, wherein N is an integer greater than one, and a frequency chirp period of each of the N transmit laser beams is the frequency chirp period of the generated laser beam; and multiple return beam paths to receive N return beams and determine time of flight values for the N return beams in parallel.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: July 5, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Tyler Adam Dunn, Andrew William Sparks, Michael Ziemkiewicz, Miles R. Bennett
  • Patent number: 11169426
    Abstract: A Liquid Crystal Waveguide (LCW) system can provide sub-aperture incoupling or outcoupling of light having an input wavelength and input beamsize defining an aperture characteristic of the system. A Liquid Crystal Waveguide (LCW) can include a generally planar LCW core to receive light via a light input zone for communication toward a light output zone. Sub-aperture interfacial light couplers can be planarly arranged in or parallel to the planar LCW core in the light input zone or the light output zone. Sub-aperture interfacial light couplers can include teeth, prisms, or facets, a photonic crystal metasurface, or a geometric-phased holograph (GPH)). Overall LCW thickness can be reduced, which can be helpful in space-limited applications or for reducing material costs.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: November 9, 2021
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Michael Howard Anderson, Tyler Adam Dunn, David Edward Fish, Scott Dennis Rommel, Andrew William Sparks, Scott Robert Davis
  • Publication number: 20210278741
    Abstract: An optical system for receiving light scanned from different light origination locations in space can include a Liquid Crystal (LC) waveguide (LCW), including first and second LCW light ports. A beamsteering LC electrode can be included in or coupled to the LCW and can be configured to vary a receiving direction of light received at the second LCW light port in response to a varying electrical input signal applied to the LC electrode to scan receiving of light at the second LCW light port from different light origination locations in space. A photodetector can be optically coupled to the first LCW light port, such as to detect waveguided light from different light origination locations in space received in response to the varying electrical input signal applied to the first LC electrode. Ranger, bright-spot locking, laser detection, direct detect and coherent lidar, wavelength detection, and other techniques and use cases are possible.
    Type: Application
    Filed: August 16, 2019
    Publication date: September 9, 2021
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Michael Howard Anderson, Bennett Sodergren, Radhika Marathe
  • Publication number: 20210255324
    Abstract: A light detection and ranging (LIDAR) system comprises a laser diode; a laser diode driver circuit configured generate a laser beam using the laser diode and to frequency chirp the generated laser beam according to a frequency chirp period; a laser splitter to split the generated laser beam into N transmit laser beams pointed at different angles, wherein N is an integer greater than one, and a frequency chirp period of each of the N transmit laser beams is the frequency chirp period of the generated laser beam; and multiple return beam paths to receive N return beams and determine time of flight values for the N return beams in parallel.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 19, 2021
    Inventors: Tyler Adam Dunn, Andrew William Sparks, Michael Ziemkiewicz, Miles R. Bennett
  • Patent number: 10976579
    Abstract: A liquid crystal waveguide (LCW) can include actively controlled incoupling of light into a LCW, such as by using a voltage-controlled electrode to actively vary a property of an LC material arranged to affect the incoupling of light into the LCW. Actively varying light incoupling into the LCW can be used, for example, such as for calibration or compensation or to provide closed-loop feedback such as to stabilize the amount of light into the LCW while accommodating or reducing sensitivity of the LCW to variations in one or more of: input laser light incidence angle, input laser wavelength, LCW or input laser temperature, input laser optical power level, or the like. This can advantageously help improve or maximize light incoupling efficiency, which can improve performance and robustness of the LCW under actual operating conditions. The LCW can be used for, among other things, beamsteering in in-plane and out-of-plane directions.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: April 13, 2021
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Scott D. Rommel, Benjamin Luey, Michael Howard Anderson, Derek Gann
  • Publication number: 20200301240
    Abstract: A Liquid Crystal Waveguide (LCW) system can provide sub-aperture incoupling or outcoupling of light having an input wavelength and input beamsize defining an aperture characteristic of the system. A Liquid Crystal Waveguide (LCW) can include a generally planar LCW core to receive light via a light input zone for communication toward a light output zone. Sub-aperture interfacial light couplers can be planarly arranged in or parallel to the planar LCW core in the light input zone or the light output zone. Sub-aperture interfacial light couplers can include teeth, prisms, or facets, a photonic crystal metasurface, or a geometric-phased holograph (GPH)). Overall LCW thickness can be reduced, which can be helpful in space-limited applications or for reducing material costs.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 24, 2020
    Inventors: Michael Ziemkiewicz, Michael Howard Anderson, Tyler Adam Dunn, David Edward Fish, Scott Dennis Rommel, Andrew William Sparks, Scott Robert Davis
  • Publication number: 20200271841
    Abstract: The present disclosure provides numerous applications for the use of liquid crystal polarization gratings (LCPGs) to controllably steer light. When combined with an image sensor, light generated or reflected from different fields of view (FOV) can be steered, allowing an increase in the FOV or the resolution of the image. Further, the LCPG can stabilize the resulting image, counteracting any movement of the image sensor. The combination of LCPGs and liquid crystal waveguides (LCWGs) allows fine deflection control of light (from the LCWG) over a wild field of view (from the LCPG). Further applications of LCPGs include object tracking and the production of depth images using multiple imaging units and independently steered LCPGs. The LCPG may be used in controlling both the projection and reception of light.
    Type: Application
    Filed: February 17, 2020
    Publication date: August 27, 2020
    Inventors: Eoin E. English, Andrew William Sparks, Scott Robert Davis, Tyler Adam Dunn, Maurizio Zecchini, Michael Ziemkiewicz, Ronald A. Kapusta, Javier Calpe Maravilla, Paul O'Sullivan, Jonathan Ephraim David Hurwitz, Erik D. Barnes, Monica Redon Segrera, krystian Balicki
  • Patent number: 10684531
    Abstract: A light beam can be steered using a non-mechanical beam steerer structure. For example, a combination of sub-aperture and full-aperture beam steering structures can be used (e.g., corresponding to regions of controlled variation in an index of refraction). The sub-aperture elements can include tapered structures defining a saw-tooth or triangular footprint in the plane in which the in-plane steering is performed. Respective rows of sub-aperture tapered structures can be configured to controllably steer the light beam in the first in-plane direction, wherein at least one row of sub-aperture tapered structures defines a first base region edge that is tipped at a first specified in-plane angle relative to a second base region edge defined by another row. Use of the tipped configuration can simplify a configuration of the beam steerer structure, such as allowing a configuration lacking a compensation plate at the input.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 16, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Tyler Adam Dunn, Michael Howard Anderson, Scott Robert Davis
  • Publication number: 20200050034
    Abstract: A liquid crystal waveguide (LCW) can include actively controlled incoupling of light into a LCW, such as by using a voltage-controlled electrode to actively vary a property of an LC material arranged to affect the incoupling of light into the LCW. Actively varying light incoupling into the LCW can be used, for example, such as for calibration or compensation or to provide closed-loop feedback such as to stabilize the amount of light into the LCW while accommodating or reducing sensitivity of the LCW to variations in one or more of: input laser light incidence angle, input laser wavelength, LCW or input laser temperature, input laser optical power level, or the like. This can advantageously help improve or maximize light incoupling efficiency, which can improve performance and robustness of the LCW under actual operating conditions. The LCW can be used for, among other things, beamsteering in in-plane and out-of-plane directions.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Scott D. Rommel, Benjamin Luey, Michael Howard Anderson, Derek Gann
  • Publication number: 20200019037
    Abstract: An electro-optical beamsteerer can be coupled with other optical structures. For example, such optical structures can be used to shape a beam being steered by the beamsteerer or shape a field-of-regard (FOR) addressable from the perspective of the beamsteerer. Optical elements placed at an output of the LCW can be used as a “spot mapper” to increase or decrease the field of view that can be scanned by a beam steered by the LCW, as an illustrative example, Lenses or other optical elements can also be used to correct distortion in the steered beam distribution across the field of view, such as to provide a “smile corrector.” In a similar manner, optical elements can be placed at an input to the beamsteerer, such as to provide a beam expander to change the size of the beam profile inside the beamsteerer device.
    Type: Application
    Filed: June 21, 2019
    Publication date: January 16, 2020
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Joseph D. Gamble, Michael Howard Anderson, Benjamin Luey
  • Patent number: 10133083
    Abstract: A non-mechanical beamsteerer can be provided to adjust an angle of a light beam, such as to scan the light beam over a field of regard. The non-mechanical beamsteerer can include a first collection of steering elements that are smaller than a size of a light beam. The first collection of steering elements can adjust the angle of the light beam by diffracting the light beam. The non-mechanical beamsteerer can also include a second collection of steering elements that are larger than a size of the light beam. The second collection of steering elements can adjust an angle of the light beam by refracting the light beam. The non-mechanical beamsteerer can operate without a compensation plate, such as to provide a reduced size of the beamsteerer and an increased acceptance angle of the beamsteerer.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: November 20, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Michael Howard Anderson, Scott Robert Davis, Benjamin Luey, Tyler Adam Dunn
  • Patent number: 10120261
    Abstract: The present subject matter includes apparatus and techniques that can be used to reduce losses in systems that perform steering of a light beam. Such steering can be performed in a non-mechanical manner, such as using an electrically-controlled optical structure (e.g., an electro-optical structure). For example, a waveguide can be used to adjust an angle of a light beam (e.g., steer the light beam). The waveguide can include a core, a cladding including an electro-optic material, and electrodes defining an arrangement that, when selectively energized, adjusts an index of refraction of the electro-optic material. In particular, electrode arrangements as described herein can be used to reduce losses, such as losses that would occur due to diffraction.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: November 6, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Michael Howard Anderson, Tyler Adam Dunn
  • Publication number: 20180292727
    Abstract: The present subject matter includes apparatus and techniques that can be used to reduce losses in systems that perform steering of a light beam. Such steering can be performed in a non-mechanical manner, such as using an electrically-controlled optical structure (e.g., an electro-optical structure). For example, a waveguide can be used to adjust an angle of a light beam (e.g., steer the light beam). The waveguide can include a core, a cladding including an electro-optic material, and electrodes defining an arrangement that, when selectively energized, adjusts an index of refraction of the electro-optic material. In particular, electrode arrangements as described herein can be used to reduce losses, such as losses that would occur due to diffraction.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 11, 2018
    Inventors: Michael Ziemkiewicz, Scott R. Davis, Michael H. Anderson, Tyler Adam Dunn
  • Patent number: 9983355
    Abstract: An optical coupler can be provided for coupling a light beam into a waveguide. The optical coupler can include a stepped structure, such as to reduce difficulties during manufacture, reduce expenses associated with manufacture, and additionally, to provide an increased acceptance angle of the optical coupler. The waveguide can include a guiding region where a cladding thickness can be increased relative to a coupling region, such as to reduce losses due to evanescent outcoupling in the guiding region.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 29, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Scott Robert Davis, Shrenik Deliwala, Michael Ziemkiewicz, Derek Gann, Andrew William Sparks, Michael Howard Anderson