Patents by Inventor Michiko Hara

Michiko Hara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10342439
    Abstract: A strain sensor element comprises a laminated film which has a magnetic free layer, a spacer layer, and a magnetic reference layer. The free layer has a variable magnetization direction and a out-of-plane magnetization direction. The reference layer has a variable magnetization direction which is pinned more strongly than the magnetization of the free layer. The spacer layer provided between the free layer and the reference layer. A pair of electrodes is provided with a plane of the laminated film. A substrate is provided with either of the pair electrodes and can be strained. The rotation angle of the magnetization of the free layer is different from the rotation angle of the magnetization of the reference layer when the substrate is distorted. Electrical resistance is changed depending on the magnetization angle between the free layer and the reference layer, which allows the element to operate as a strain sensor.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: July 9, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Alexander Devin Giddings, Hideaki Fukuzawa, Yoshihiko Fuji, Hiromi Yuasa, Michiko Hara, Shuichi Murakami
  • Patent number: 10345162
    Abstract: According to one embodiment, a sensor includes a first sensor unit, a first stacked body, and a film unit. The first sensor unit includes a first magnetic layer, a second magnetic layer, and a first intermediate layer, the first intermediate layer being provided between the first magnetic layer and the second magnetic layer. The first stacked body includes a third magnetic layer, a fourth magnetic layer, and a second intermediate layer, the second intermediate layer being provided between the third magnetic layer and the fourth magnetic layer. The film unit is deformable. A portion of the film unit is disposed between the first sensor unit and the first stacked body.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 9, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akiko Yuzawa, Hideaki Fukuzawa, Kei Masunishi, Yoshihiro Higashi, Michiko Hara, Yoshihiko Fuji
  • Patent number: 10254305
    Abstract: An inertial sensor includes a base portion, a weight portion, a connection portion, and a first sensing element unit. The connection portion connects the weight portion and the base portion and is capable of being deformed in accordance with a change in relative position of the weight portion with respect to the position of the base portion. The first sensing element unit is provided on a first portion of the connection portion and includes a first magnetic layer, a second magnetic layer, and a nonmagnetic first intermediate layer. The nonmagnetic first intermediate layer is provided between the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: April 9, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Michiko Hara, Yoshihiko Fuji, Yoshihiro Higashi, Shiori Kaji, Akio Hori, Tomohiko Nagata, Akiko Yuzawa, Akira Kikitsu
  • Patent number: 10246324
    Abstract: According to one embodiment, a strain and pressure sensing device includes a semiconductor circuit unit and a sensing unit. The semiconductor circuit unit includes a semiconductor substrate and a transistor. The transistor is provided on a semiconductor substrate. The sensing unit is provided on the semiconductor circuit unit, and has space and non-space portions. The non-space portion is juxtaposed with the space portion. The sensing unit further includes a movable beam, a strain sensing element unit, and first and second buried interconnects. The movable beam has fixed and movable portions, and includes first and second interconnect layers. The fixed portion is fixed to the non-space portion. The movable portion is separated from the transistor and extends from the fixed portion into the space portion. The strain sensing element unit is fixed to the movable portion. The first and second buried interconnects are provided in the non-space portion.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 2, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hideaki Fukuzawa, Tatsuya Ohguro, Akihiro Kojima, Yoshiaki Sugizaki, Mariko Takayanagi, Yoshihiko Fuji, Akio Hori, Michiko Hara
  • Publication number: 20190086481
    Abstract: According to one embodiment, a sensor includes a supporter, a first film portion, a first sensing element, and a first magnetic portion. The first film portion is supported by the supporter, is deformable, and includes a first fixed end extending along a first fixed end direction. A first sensing element is fixed to the first film portion, and includes a first magnetic layer, a first opposing magnetic layer provided between the first magnetic layer and the first film portion, and a first intermediate layer provided between the first magnetic layer and the first opposing magnetic layer. A direction from the first opposing magnetic layer toward the first magnetic layer is aligned with a first element direction. The first magnetic portion includes a first end portion extending along a first end portion direction tilted with respect to the first fixed end direction, and overlaps a portion of the supporter.
    Type: Application
    Filed: February 14, 2018
    Publication date: March 21, 2019
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shotaro BABA, Yoshihiko FUJI, Akiko YUZAWA, Kei MASUNISHI, Michiko HARA, Shiori KAJI, Tomohiko NAGATA, Yoshihiro HIGASHI, Kazuaki OKAMOTO
  • Patent number: 10234343
    Abstract: According to one embodiment, a pressure sensor includes a film part, and a sensing unit. A circumscribing rectangle circumscribing a configuration of a film surface of the film part has a first side, a second side, a third side connected to one end of the first side and one end of the second side, a fourth side connected to one other end of the first side and one other end of the second side, and a centroid of the circumscribing rectangle. The circumscribing rectangle includes a first region enclosed by the first side, line segments connecting the centroid to the one end of the first side, and to the one other end of the first side. The sensing unit includes sensing elements provided on a portion of the film surface overlapping the first region. Each sensing element includes a first, second magnetic layers, and a spacer layer.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: March 19, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Kei Masunishi, Hideaki Fukuzawa, Yoshihiro Higashi, Michiko Hara, Akio Hori, Tomohiko Nagata, Shiori Kaji, Akiko Yuzawa
  • Publication number: 20190062148
    Abstract: According to one embodiment, a sensor includes a film portion, and a first sensor portion. The film portion includes a first film including a plurality of holes. The film portion is deformable. The first sensor portion is fixed to a portion of the film portion. The first sensor portion includes a first magnetic layer, a second magnetic layer, and a first intermediate layer. The second magnetic layer is provided between the first film and the first magnetic layer. The first intermediate layer is provided between the first magnetic layer and the second magnetic layer. A direction from at least a portion of the plurality of holes toward the first sensor portion is aligned with a first direction. The first direction is from the first film toward the first sensor portion.
    Type: Application
    Filed: March 15, 2018
    Publication date: February 28, 2019
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akiko YUZAWA, Yoshihiko FUJI, Michiko HARA, Kenji OTSU, Kazuaki OKAMOTO, Shotaro BABA
  • Patent number: 10206654
    Abstract: A pressure sensor of an embodiment includes a support portion, a transformable membrane part and a sensor portion. The membrane part includes an end portion supported by the support portion, and a first area and a second area. The first area is positioned between a center of the membrane part and the end portion and has a first rigidity. The second area is positioned between the first area and the end portion, and has a second rigidity lower than the first rigidity. The sensor portion is provided at the first area and includes a first magnetic layer, a second magnetic layer and a first intermediate layer provided between the first magnetic layer and the second magnetic layer. An end-side distance between the first area and the end portion is shorter than a center-side distance between the second area and the center of the membrane part.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 19, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kei Masunishi, Akiko Yuzawa, Yoshihiko Fuji, Michiko Hara, Yoshihiro Higashi, Kazuaki Okamoto, Kenji Otsu
  • Publication number: 20190041285
    Abstract: According to one embodiment, a sensor includes a deformable film portion, a first sensing element and a second sensing element. The first sensing element is fixed to the film portion, and includes a first magnetic layer of a first material, a first opposing magnetic layer, and a first intermediate layer. The first intermediate layer is provided between the first magnetic layer and the first opposing magnetic layer. The second sensing element is fixed to the film portion, and includes a second magnetic layer of a second material, a second opposing magnetic layer, and a second intermediate layer. The second material is different from the first material. The second intermediate layer is provided between the second magnetic layer and the second opposing magnetic layer.
    Type: Application
    Filed: September 28, 2018
    Publication date: February 7, 2019
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko FUJI, Michiko HARA, Kei MASUNISHI, Yoshihiro HIGASHI, Shiori KAJI, Akiko YUZAWA, Akio HORI, Tomohiko NAGATA, Kazuaki OKAMOTO, Kenji OTSU, Shotaro BABA
  • Publication number: 20190017891
    Abstract: According to one embodiment, a sensor includes a first film, a first sensor portion, and first to fourth terminals. The first film includes first to second electrode layers, and a piezoelectric layer. The first film is deformable. The first sensor portion is fixed to a portion of the first film. A first direction from the portion of the first film toward the first sensor portion is aligned with a direction from the second electrode layer toward the first electrode layer. The first sensor portion includes first to second sensor conductive layers, first to second magnetic layers, and a first intermediate layer. The first terminal is electrically connected to the first electrode layer. The second terminal is electrically connected to the second electrode layer. The third terminal is electrically connected to the first sensor conductive layer. The fourth terminal is electrically connected to the second sensor conductive layer.
    Type: Application
    Filed: February 28, 2018
    Publication date: January 17, 2019
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kenji Otsu, Yoshihiko Fuji, Akiko Yuzawa, Michiko Hara, Yoshihiro Higashi, Shiori Kaji, Kazuaki Okamoto, Shotaro Baba, Tomohiko Nagata
  • Publication number: 20180352342
    Abstract: According to one embodiment, a microphone package includes: a pressure sensing element including a film and a device; and a cover. The film generates strain in response to pressure. The device includes: a first electrode; a second electrode; and a first magnetic layer. The first magnetic layer is provided between the first electrode and the second electrode and has a first magnetization. The cover includes: an upper portion; and a side portion. The side portion is magnetic and provided depending on the first magnetization and the second magnetization.
    Type: Application
    Filed: August 3, 2018
    Publication date: December 6, 2018
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Higashi, Yoshihiko Fuji, Michiko Hara, Akiko Yuzawa, Shiori Kaji, Tomohiko Nagata, Akio Hori, Hideaki Fukuzawa
  • Patent number: 10145751
    Abstract: According to one embodiment, a sensor includes a deformable film portion, a first sensing element and a second sensing element. The first sensing element is fixed to the film portion, and includes a first magnetic layer of a first material, a first opposing magnetic layer, and a first intermediate layer. The first intermediate layer is provided between the first magnetic layer and the first opposing magnetic layer. The second sensing element is fixed to the film portion, and includes a second magnetic layer of a second material, a second opposing magnetic layer, and a second intermediate layer. The second material is different from the first material. The second intermediate layer is provided between the second magnetic layer and the second opposing magnetic layer.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: December 4, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Michiko Hara, Kei Masunishi, Yoshihiro Higashi, Shiori Kaji, Akiko Yuzawa, Akio Hori, Tomohiko Nagata, Kazuaki Okamoto, Kenji Otsu, Shotaro Baba
  • Patent number: 10094723
    Abstract: A sensor includes a film portion and a first sensor portion. The film portion is deformable. The first sensor portion is provided at the film portion. The first sensor portion includes a first conductive layer, a second conductive layer, a first magnetic layer, a second magnetic layer, and a first intermediate layer. The second conductive layer is provided between the first conductive layer and the film portion. The first magnetic layer is provided between the first conductive layer and the second conductive layer. The second magnetic layer is provided between the first magnetic layer and the second conductive layer. The first intermediate layer is provided between the first magnetic layer and the second magnetic layer. A curvature of the first conductive layer is different from a curvature of at least a portion of the film portion.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: October 9, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Otsu, Michiko Hara, Yoshihiko Fuji, Kei Masunishi, Akiko Yuzawa, Tomohiko Nagata, Shiori Kaji, Yoshihiro Higashi, Kazuaki Okamoto, Shotaro Baba
  • Patent number: 10082430
    Abstract: According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: September 25, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Akihiko Enamito, Osamu Nishimura, Michiko Hara, Hiromi Yuasa, Yoshihiko Fuji, Masayuki Kii, Eizo Fujisawa
  • Publication number: 20180256035
    Abstract: A strain sensor element comprises a laminated film which has a magnetic free layer, a spacer layer, and a magnetic reference layer. The free layer has a variable magnetization direction and a out-of-plane magnetization direction. The reference layer has a variable magnetization direction which is pinned more strongly than the magnetization of the free layer. The spacer layer provided between the free layer and the reference layer. A pair of electrodes is provided with a plane of the laminated film. A substrate is provided with either of the pair electrodes and can be strained. The rotation angle of the magnetization of the free layer is different from the rotation angle of the magnetization of the reference layer when the substrate is distorted. Electrical resistance is changed depending on the magnetization angle between the free layer and the reference layer, which allows the element to operate as a strain sensor.
    Type: Application
    Filed: May 8, 2018
    Publication date: September 13, 2018
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Alexander Devin GIDDINGS, Hideaki Fukuzawa, Yoshihiko Fuji, Hiromi Yuasa, Michiko Hara, Shuichi Murakami
  • Patent number: 10070230
    Abstract: According to one embodiment, a microphone package includes: a pressure sensing element including a film and a device; and a cover. The film generates strain in response to pressure. The device includes: a first electrode; a second electrode; and a first magnetic layer. The first magnetic layer is provided between the first electrode and the second electrode and has a first magnetization. The cover includes: an upper portion; and a side portion. The side portion is magnetic and provided depending on the first magnetization and the second magnetization.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: September 4, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Higashi, Yoshihiko Fuji, Michiko Hara, Akiko Yuzawa, Shiori Kaji, Tomohiko Nagata, Akio Hori, Hideaki Fukuzawa
  • Patent number: 10060818
    Abstract: A sensor includes a first film, a first sensor portion, and a first element portion. The first film is deformable. The first sensor portion is provided at the first film. The first sensor portion includes a first magnetic layer, a second magnetic layer provided between the first film and the first magnetic layer, and a first intermediate layer provided between the first magnetic layer and the second magnetic layer. The first element portion includes a first piezoelectric layer fixed to the first film.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 28, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akiko Yuzawa, Yasushi Tomizawa, Yoshihiko Fuji, Michiko Hara
  • Publication number: 20180231621
    Abstract: According to one embodiment, a sensor includes a first film, a first sensor portion, a driving portion, and a processor. The first sensor portion is provided at the first film. The first sensor portion includes a first magnetic layer, a second magnetic layer, and a first intermediate layer. The second magnetic layer is provided between the first film and the first magnetic layer. The first intermediate layer is provided between the first magnetic layer and the second magnetic layer. The driving portion causes the first film to deform at a first frequency. The processor outputs a third signal based on a first signal and a second signal. The first signal relates to the first frequency. The second signal is output from the first sensor portion.
    Type: Application
    Filed: September 15, 2017
    Publication date: August 16, 2018
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro HIGASHI, Michiko HARA, Tomohiko NAGATA, Shiori KAJI, Yoshihiko FUJI, Akiko YUZAWA, Kenji OTSU, Kazuaki OKAMOTO, Shotaro BABA
  • Publication number: 20180226572
    Abstract: According to an embodiment, a magnetic element includes a first layer, a first magnetic layer, a second magnetic layer, a first nonmagnetic layer, a second layer, and a third magnetic layer. The first layer includes ruthenium. The second magnetic layer is provided between the first layer and the first magnetic layer. The first nonmagnetic layer provided between the first magnetic layer and the second magnetic layer. The second layer includes tantalum. The second layer contacts the first layer and is provided between the first layer and the second magnetic layer. A lattice plane spacing of the second layer in a first direction is not less than 0.23 nm and not more than 0.25 nm. The first direction is from the first layer toward the first magnetic layer. The third magnetic layer includes manganese. The third magnetic layer is provided between the second layer and the second magnetic layer.
    Type: Application
    Filed: September 8, 2017
    Publication date: August 9, 2018
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazuaki OKAMOTO, Yoshihiko Fuji, Yoshihiro Higashi, Michiko Hara, Shiori Kaji
  • Publication number: 20180210041
    Abstract: According to one embodiment, a sensor includes a support body, a film portion, a first sensing element, and a structure body. The first sensing element is fixed to the film portion, and includes a first magnetic layer, a first opposing magnetic layer, and a first intermediate layer. The structure body includes a first region overlapping the support body, and a second region being continuous with the first region and overlapping the film portion. The structure body includes a first structure body layer, a first opposing structure body layer, and a first structure body intermediate layer. The first opposing structure body layer is provided between the first structure body layer and the support body and between the first structure body layer and the film portion. The first structure body intermediate layer is provided between the first structure body layer and the first opposing structure body layer.
    Type: Application
    Filed: August 29, 2017
    Publication date: July 26, 2018
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shotaro Baba, Yoshihiko Fuji, Kei Masunishi, Michiko Hara, Akiko Yuzawa, Shiori Kaji, Tomohiko Nagata, Yoshihiro Higashi, Kenji Otsu, Kazuaki Okamoto