Patents by Inventor Michimasa Miyanaga

Michimasa Miyanaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170283915
    Abstract: A magnesium alloy contains, in mass %, from 1% to 12% inclusive of Al and from 0.1% to 5% inclusive of Mn and has a structure in which particles of compounds containing Al and Mn are dispersed. The average diameter of the particles of the compounds is from 0.3 ?m to 1 ?m inclusive, and the area ratio of the particles of the compounds is from 3.5% to 25% inclusive.
    Type: Application
    Filed: September 24, 2015
    Publication date: October 5, 2017
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro OISHI, Nozomu KAWABE, Michimasa MIYANAGA, Eisuke HIRO
  • Patent number: 9254519
    Abstract: Provided is a composite material suitable for forming a part for continuous casting capable of producing cast materials of excellent surface quality for a long period of time and with which a molten metal is inhibited from flowing into a gap between a nozzle and a moving mold. A composite material (nozzle 1) includes a porous body 2 having a large number of pores and a filler incorporated in at least part of a portion that comes into contact with the molten metal, the portion being part of a surface portion of the porous body. The filler incorporated in the porous body 2 is at least one selected from a nitride, a carbide, and carbon.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 9, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Michimasa Miyanaga, Takeshi Uchihara, Masatada Numano, Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 9222160
    Abstract: A coil material capable of contributing to an improvement of the productivity of a high-strength magnesium alloy sheet and a method for manufacturing the coil material are provided. Regarding the method for manufacturing a coil material through coiling of a sheet material formed from a metal into the shape of a cylinder, so as to produce the coil material, the sheet material is a cast material of a magnesium alloy discharged from a continuous casting machine and the thickness t (mm) thereof is 7 mm or less. The sheet material 1 is coiled with a coiler while the temperature T (° C.) of the sheet material 1 just before coiling is controlled to be a temperature at which the surface strain ((t/R)×100) represented by the thickness t and the bending radius R (mm) of the sheet material 1 becomes less than or equal to the elongation at room temperature of the sheet material 1.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: December 29, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masatada Numano, Michimasa Miyanaga, Takeshi Uchihara, Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 9064706
    Abstract: Group-III nitride crystal composites made up of especially processed crystal slices, cut from III-nitride bulk crystal, whose major surfaces are of {1-10±2}, {11-2±2}, {20-2±1} or {22-4±1} orientation, disposed adjoining each other sideways with the major-surface side of each slice facing up, and III-nitride crystal epitaxially present on the major surfaces of the adjoining slices, with the III-nitride crystal containing, as principal impurities, either silicon atoms or oxygen atoms. With x-ray diffraction FWHMs being measured along an axis defined by a <0001> direction of the substrate projected onto either of the major surfaces, FWHM peak regions are present at intervals of 3 to 5 mm width. Also, with threading dislocation density being measured along a <0001> direction of the III-nitride crystal substrate, threading-dislocation-density peak regions are present at the 3 to 5 mm intervals.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: June 23, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Patent number: 8937339
    Abstract: Si(1-v-w-x)CwAlxNv crystals in a mixed crystal state are formed. A method for manufacturing an easily processable Si(1-v-w-x)CwAlxNv substrate, a method for manufacturing an epitaxial wafer, a Si(1-v-w-x)CwAlxNv substrate, and an epitaxial wafer are provided. A method for manufacturing a Si(1-v-w-x)CwAlxNv substrate 10a includes the following steps. First, a Si substrate 11 is prepared. A Si(1-v-w-x)CwAlxNv layer 12 (0<v<1, 0?w<1, 0<x<1, and 0<v+w+x<1) is then grown on the Si substrate 11 by a pulsed laser deposition method.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: January 20, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Satoh, Michimasa Miyanaga, Shinsuke Fujiwara, Hideaki Nakahata
  • Publication number: 20150008563
    Abstract: Group-III nitride crystal composites made up of especially processed crystal slices, cut from III-nitride bulk crystal, whose major surfaces are of {1-10±2}, {11-2±2}, {20-2±1} or {22-4±1} orientation, disposed adjoining each other sideways with the major-surface side of each slice facing up, and III-nitride crystal epitaxially present on the major surfaces of the adjoining slices, with the III-nitride crystal containing, as principal impurities, either silicon atoms or oxygen atoms. With x-ray diffraction FWHMs being measured along an axis defined by a <0001> direction of the substrate projected onto either of the major surfaces, FWHM peak regions are present at intervals of 3 to 5 mm width. Also, with threading dislocation density being measured along a <0001> direction of the III-nitride crystal substrate, threading-dislocation-density peak regions are present at the 3 to 5 mm intervals.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 8, 2015
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Publication number: 20140357067
    Abstract: A method of manufacturing a nitride substrate includes the following steps. Firstly, a nitride crystal is grown. Then, the nitride substrate including a front surface is cut from the nitride crystal. In the step of cutting, the nitride substrate is cut such that an off angle formed between an axis orthogonal to the front surface and an m-axis or an a-axis is greater than zero. When the nitride crystal is grown in a c-axis direction, in the step of cutting, the nitride substrate is cut from the nitride crystal along a flat plane which passes through a front surface and a rear surface of the nitride crystal and does not pass through a line segment connecting a center of a radius of curvature of the front surface with a center of a radius of curvature of the rear surface of the nitride crystal.
    Type: Application
    Filed: August 18, 2014
    Publication date: December 4, 2014
    Inventors: Satoshi ARAKAWA, Michimasa MIYANAGA, Takashi SAKURADA, Yoshiyuki YAMAMOTO, Hideaki NAKAHATA
  • Patent number: 8872309
    Abstract: Group-III nitride crystal composites made up of especially processed crystal slices, cut from III-nitride bulk crystal, whose major surfaces are of {1-10±2}, {11-2±2}, {20-2±1} or {22-4±1} orientation, disposed adjoining each other sideways with the major-surface side of each slice facing up, and III-nitride crystal epitaxially present on the major surfaces of the adjoining slices, with the III-nitride crystal containing, as principal impurities, either silicon atoms or oxygen atoms.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: October 28, 2014
    Assignee: Sumitomo Electronic Industries, Ltd.
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Patent number: 8829658
    Abstract: A method of manufacturing a nitride substrate includes the following steps. Firstly, a nitride crystal is grown. Then, the nitride substrate including a front surface is cut from the nitride crystal. In the step of cutting, the nitride substrate is cut such that an off angle formed between an axis orthogonal to the front surface and an m-axis or an a-axis is greater than zero. When the nitride crystal is grown in a c-axis direction, in the step of cutting, the nitride substrate is cut from the nitride crystal along a flat plane which passes through a front surface and a rear surface of the nitride crystal and does not pass through a line segment connecting a center of a radius of curvature of the front surface with a center of a radius of curvature of the rear surface of the nitride crystal.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Satoshi Arakawa, Michimasa Miyanaga, Takashi Sakurada, Yoshiyuki Yamamoto, Hideaki Nakahata
  • Publication number: 20140175616
    Abstract: Group-III nitride crystal composites made up of especially processed crystal slices, cut from III-nitride bulk crystal, whose major surfaces are of {1-10±2}, {11-2±2}, {20-2±1} or {22-4±1} orientation, disposed adjoining each other sideways with the major-surface side of each slice facing up, and III-nitride crystal epitaxially present on the major surfaces of the adjoining slices, with the III-nitride crystal containing, as principal impurities, either silicon atoms or oxygen atoms.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Patent number: 8715414
    Abstract: There are provided a Si(1-v-w-x)CwAlxNv substrate that achieves high crystallinity and low costs, an epitaxial wafer, and manufacturing methods thereof. A method for manufacturing a Si(1-v-w-x)CwAlxNv substrate according to the present invention includes the steps of preparing a different type of substrate 11 and growing a Si(1-v-w-x)CwAlxNv layer having a main surface on the different type of substrate 11. The component ratio x+v at the main surface of the Si(1-v-w-x)CwAlxNv layer is 0<x+v<1. The component ratio x+v increases or decreases monotonically from the interface between the Si(1-v-w-x)CwAlxNv layer and the different type of substrate 11 to the main surface of the Si(1-v-w-x)CwAlxNv layer. The component ratio x+v at the interface between the Si(1-v-w-x)CwAlxNv layer and the different type of substrate 11 is closer to that of the material of the different type of substrate 11 than the component ratio x+v at the main surface of the Si(1-v-w-x)CwAlxNv layer.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: May 6, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Satoh, Michimasa Miyanaga, Shinsuke Fujiwara, Hideaki Nakahata
  • Patent number: 8709923
    Abstract: Provided is a method of manufacturing III-nitride crystal having a major surface of plane orientation other than {0001}, designated by choice, the III-nitride crystal manufacturing method including: a step of slicing III-nitride bulk crystal through a plurality of planes defining a predetermined slice thickness in the direction of the designated plane orientation, to produce a plurality of III-nitride crystal substrates having a major surface of the designated plane orientation; a step of disposing the substrates adjoining each other sideways in a manner such that the major surfaces of the substrates parallel each other and such that any difference in slice thickness between two adjoining III-nitride crystal substrates is not greater than 0.1 mm; and a step of growing III-nitride crystal onto the major surfaces of the substrates.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: April 29, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Patent number: 8702865
    Abstract: Affords AlxGa1-xN crystal growth methods, as well as AlxGa1-xN crystal substrates, wherein bulk, low-dislocation-density crystals are obtained. The AlxGa1-xN crystal (0<x?1) growth method is a method of growing, by a vapor-phase technique, an AlxGa1-xN crystal (10), characterized by forming, in the growing of the crystal, at least one pit (10p) having a plurality of facets (12) on the major growth plane (11) of the AlxGa1-xN crystal (10), and growing the AlxGa1-xN crystal (10) with the at least one pit (10p) being present, to reduce dislocations in the AlxGa1-xN crystal (10).
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: April 22, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Michimasa Miyanaga, Naho Mizuhara, Hideaki Nakahata
  • Patent number: 8613802
    Abstract: Affords nitride semiconductor crystal manufacturing apparatuses that are durable and that are for manufacturing nitride semiconductor crystal in which the immixing of impurities from outside the crucible is kept under control, and makes methods for manufacturing such nitride semiconductor crystal, and the nitride semiconductor crystal itself, available. A nitride semiconductor crystal manufacturing apparatus (100) is furnished with a crucible (101), a heating unit (125), and a covering component (110). The crucible (101) is where, interiorly, source material (17) is disposed. The heating unit (125) is disposed about the outer periphery of the crucible (101), where it heats the crucible (101) interior. The covering component (110) is arranged in between the crucible (101) and the heating unit (125).
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: December 24, 2013
    Assignee: Sumitomo Electric Industies, Ltd.
    Inventors: Issei Satoh, Michimasa Miyanaga, Yoshiyuki Yamamoto, Hideaki Nakahata
  • Patent number: 8591653
    Abstract: A compound semiconductor single-crystal manufacturing device (1) is furnished with: a laser light source (6) making it possible to sublime a source material by directing a laser beam onto the material; a reaction vessel (2) having a laser entry window (5) through which the laser beam output from the laser light source (6) can be transmitted to introduce the beam into the vessel interior, and that is capable of retaining a starting substrate (3) where sublimed source material is recrystallized; and a heater (7) making it possible to heat the starting substrate (3). The laser beam is shone on, to heat and thereby sublime, the source material within the reaction vessel (2), and compound semiconductor single crystal is grown by recrystallizing the sublimed source material onto the starting substrate (3); afterwards the laser beam is employed to separate the compound semiconductor single crystal from the starting substrate (3).
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: November 26, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Satoh, Naho Mizuhara, Keisuke Tanizaki, Michimasa Miyanaga, Takashi Sakurada, Hideaki Nakahata
  • Patent number: 8540817
    Abstract: There are provided a method for manufacturing a Si(1-v-w-x)CwAlxNv substrate having a reduced number of cracks and high processability, a method for manufacturing an epitaxial wafer, a Si(1-v-w-x)CwAlxNv substrate, and an epitaxial wafer. A method for manufacturing a Si(1-v-w-x)CwAlxNv substrate 10a includes the following steps. First, a Si substrate 11 is prepared. A Si(1-v-w-x)CwAlxNv layer (0<v<1, 0<w<1, 0<x<1, and 0<v+w+x<1) is then grown on the Si substrate at a temperature below 550° C.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: September 24, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Satoh, Michimasa Miyanaga, Shinsuke Fujiwara, Hideaki Nakahata
  • Patent number: 8470090
    Abstract: Affords large-diametric-span AlN crystals, applicable to various types of semiconductor devices, with superior crystallinity, a method of growing the AlN crystals, and AlN crystal substrates. The AlN crystal growth method is a method in which an AlN crystal (4) is grown by vapor-phase epitaxy onto a seed crystal substrate (2) placed inside a crystal-growth compartment (24) within a crystal-growth vessel (12) provided within a reaction chamber, and is characterized in that during growth of the crystal, carbon-containing gas is supplied to the inside of the crystal-growth compartment (24).
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: June 25, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naho Mizuhara, Michimasa Miyanaga, Tomohiro Kawase, Shinsuke Fujiwara
  • Publication number: 20130089457
    Abstract: Provided is a composite material suitable for forming a part for continuous casting capable of producing cast materials of excellent surface quality for a long period of time and with which a molten metal is inhibited from flowing into a gap between a nozzle and a moving mold. A composite material (nozzle 1) includes a porous body 2 having a large number of pores and a filler incorporated in at least part of a portion that comes into contact with the molten metal, the portion being part of a surface portion of the porous body. The filler incorporated in the porous body 2 is at least one selected from a nitride, a carbide, and carbon.
    Type: Application
    Filed: June 3, 2011
    Publication date: April 11, 2013
    Applicant: Sumitomo Electric Industries Ltd
    Inventors: Michimasa Miyanaga, Takeshi Uchihara, Masatada Numano, Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 8404042
    Abstract: III-nitride crystal composites are made up of especially processed crystal slices cut from III-nitride bulk crystal having, ordinarily, a {0001} major surface and disposed adjoining each other sideways, and of III-nitride crystal epitaxially on the bulk-crystal slices. The slices are arranged in such a way that their major surfaces parallel each other, but are not necessarily flush with each other, and so that the [0001] directions in the slices are oriented in the same way.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 26, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naho Mizuhara, Koji Uematsu, Michimasa Miyanaga, Keisuke Tanizaki, Hideaki Nakahata, Seiji Nakahata, Takuji Okahisa
  • Patent number: 8377204
    Abstract: Affords methods of growing III nitride single crystals of favorable crystallinity with excellent reproducibility, and the III nitride crystals obtained by the growth methods. One method grows a III nitride single crystal (3) inside a crystal-growth vessel (11), the method being characterized in that a porous body formed from a metal carbide, whose porosity is between 0.1% and 70% is employed in at least a portion of the crystal-growth vessel (11). Employing the crystal-growth vessel (11) makes it possible to discharge from 1% to 50% of a source gas (4) inside the crystal-growth vessel (11) via the pores in the porous body to the outside of the crystal-growth vessel (11).
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 19, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Michimasa Miyanaga, Naho Mizuhara, Shinsuke Fujiwara, Seiji Nakahata, Hideaki Nakahata