Patents by Inventor Michio Ishikawa

Michio Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072609
    Abstract: A motor includes a bottomed cylindrical housing incorporating a rotor that rotate integrally with a shaft and a stator, and an end bell having an end plate that closes an opening of the housing and a holder that is provided between the rotor and the end plate in an axial direction and to which an electrical element is attached. The end plate has an air hole penetrating the end plate in the axial direction. The holder includes an attachment portion to which the electrical element is attached, and has an insertion hole through which the shaft is inserted. At least part, of the attachment portion, overlapping the air hole when viewed in the axial direction has a cutout portion.
    Type: Application
    Filed: August 18, 2023
    Publication date: February 29, 2024
    Inventors: Naoki ISHIKAWA, Kouichi HASHIMOTO, Yasuaki MATSUOKA, Michio TSUNODA
  • Patent number: 11728198
    Abstract: An electrostatic chuck according to an embodiment includes a fixing plate on which a wafer is fixed, an electrostatic plate located under the fixing plate and configured to generate an electrostatic force to fix the wafer on the fixing plate, a plurality of heating elements located under the electrostatic plate and separated to locally control a temperature of the electrostatic plate, and a cooling plate located under the plurality of separated heating elements and configured to emit heat transferred by the plurality of separated heating elements.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: August 15, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Myoung-Soo Park, Siqing Lu, Michio Ishikawa, Masashi Kikuchi
  • Patent number: 11309203
    Abstract: A wafer stage includes an electrostatic chuck (ESC) plate, an upper supporting plate, a lower supporting plate and a temperature controller. The ESC plate includes a first surface that supports a wafer. The upper supporting plate is bonded to a second surface of the ESC plate opposite to the first surface. The lower supporting plate overlaps the upper supporting plate. The temperature controller is disposed between the upper supporting plate and the lower supporting plate. The ESC plate includes ceramics. The upper supporting plate includes a composite material of aluminum or aluminum alloy and ceramics or carbon. The ESC plate and the upper supporting plate are directly bonded to each other by a room temperature solid bonding process. Thus, the wafer stage has sufficient strength to withstand pressure differences between a vacuum and atmospheric pressure, improved temperature response by minimizing heat capacity, and prevents warpage of the ESC plate.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: April 19, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kazuyuki Tomizawa, Masashi Kikuchi, Michio Ishikawa, Takafumi Noguchi, Kazuhiro Yamamuro
  • Patent number: 10718053
    Abstract: A wafer loading apparatus capable of making a temperature distribution in a surface of a wafer more uniform is provided. The wafer loading apparatus includes a stage on which a wafer is loaded, and a heater installed in the stage to heat a wafer loaded on a loading surface of the stage. The stage includes a top plate providing the loading surface. The heater includes first heater coils disposed on a surface of the top plate opposite to the loading surface, electrode portions electrically connected to the first heater coils and arranged side by side along an outer peripheral portion of the top plate, and a second heater coil disposed outside the first heater coils. The second heater coil generates heat in such a way that a heat distribution in a circumferential direction is varied corresponding to the arrangement of the electrode portions.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: July 21, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kazuyuki Tomizawa, Masashi Kikuchi, Michio Ishikawa, Naoki Takahashi
  • Publication number: 20200152499
    Abstract: A wafer stage includes an electrostatic chuck (ESC) plate, an upper supporting plate, a lower supporting plate and a temperature controller. The ESC plate includes a first surface that supports a wafer. The upper supporting plate is bonded to a second surface of the ESC plate opposite to the first surface. The lower supporting plate overlaps the upper supporting plate. The temperature controller is disposed between the upper supporting plate and the lower supporting plate. The ESC plate includes ceramics. The upper supporting plate includes a composite material of aluminum or aluminum alloy and ceramics or carbon. The ESC plate and the upper supporting plate are directly bonded to each other by a room temperature solid bonding process. Thus, the wafer stage has sufficient strength to withstand pressure differences between a vacuum and atmospheric pressure, improved temperature response by minimizing heat capacity, and prevents warpage of the ESC plate.
    Type: Application
    Filed: July 1, 2019
    Publication date: May 14, 2020
    Inventors: KAZUYUKI TOMIZAWA, MASASHI KIKUCHI, MICHIO ISHIKAWA, TAKAFUMI NOGUCHI, KAZUHIRO YAMAMURO
  • Publication number: 20200066565
    Abstract: An electrostatic chuck according to an embodiment includes a fixing plate on which a wafer is fixed, an electrostatic plate located under the fixing plate and configured to generate an electrostatic force to fix the wafer on the fixing plate, a plurality of heating elements located under the electrostatic plate and separated to locally control a temperature of the electrostatic plate, and a cooling plate located under the plurality of separated heating elements and configured to emit heat transferred by the plurality of separated heating elements.
    Type: Application
    Filed: June 5, 2019
    Publication date: February 27, 2020
    Inventors: Myoung-soo Park, Siqing Lu, Michio Ishikawa, Masashi Kikuchi
  • Patent number: 10530976
    Abstract: The present disclosure provides apparatuses and methods for color imaging and an increased field of view using spectrally encoded endoscopy techniques. At least one of the apparatuses includes an illumination unit having two or more spectrally dispersive gratings positioned, for example, on different planes or on the same plane but having grating vectors at an angle to each other such that bands of spectrally dispersed light propagating from the gratings propagate on different planes.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: January 7, 2020
    Assignee: Canon U.S.A., Inc.
    Inventors: Seiji Takeuchi, Jacob Schieffelin Brauer, Anderson Mach, Badr Elmaanaoui, Sarika Verma, Kenji Yamazoe, Toshiyuki Sudo, Michio Ishikawa
  • Publication number: 20190177841
    Abstract: Provided is a film forming apparatus that can be used for an ultrahigh temperature film forming process. A film forming apparatus for forming a film on a wafer in a chamber may include a rotary stage configured to rotate in a circumferential direction, the rotary stage having a loading surface, on which the wafer may be loaded, a heater provided in the rotary stage to heat the wafer loaded on the loading surface, and a power supply part configured to supply electric power to the heater. The rotary stage includes a rotary shaft, which may be provided to penetrate the chamber and may be supported to be rotatable, the power supply part may be electrically coupled to the heater and may have a wire, which may be extended to an outside of the chamber through a penetration hole penetrating the rotary shaft in an axis direction, the heater may be configured to heat the wafer loaded on the loading surface of the rotary stage, to a temperature of 600° C. to 2000° C.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 13, 2019
    Inventors: Kazuyuki TOMIZAWA, Masashi KIKUCHI, Michio ISHIKAWA, Naoki TAKAHASHI
  • Publication number: 20190177847
    Abstract: A wafer loading apparatus capable of making a temperature distribution in a surface of a wafer more uniform is provided. The wafer loading apparatus includes a stage on which a wafer is loaded, and a heater installed in the stage to heat a wafer loaded on a loading surface of the stage. The stage includes a top plate providing the loading surface. The heater includes first heater coils disposed on a surface of the top plate opposite to the loading surface, electrode portions electrically connected to the first heater coils and arranged side by side along an outer peripheral portion of the top plate, and a second heater coil disposed outside the first heater coils. The second heater coil generates heat in such a way that a heat distribution in a circumferential direction is varied corresponding to the arrangement of the electrode portions.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 13, 2019
    Inventors: Kazuyuki Tomizawa, MASASHI KIKUCHI, MICHIO ISHIKAWA, NAOKI TAKAHASHI
  • Publication number: 20190174038
    Abstract: The present disclosure provides apparatuses and methods for color imaging and an increased field of view using spectrally encoded endoscopy techniques. At least one of the apparatuses includes an illumination unit having two or more spectrally dispersive gratings positioned, for example, on different planes or on the same plane but having grating vectors at an angle to each other such that bands of spectrally dispersed light propagating from the gratings propagate on different planes.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 6, 2019
    Inventors: Seiji TAKEUCHI, Jacob Schieffelin BRAUER, Anderson MACH, Badr ELMAANAOUI, Sarika VERMA, Kenji YAMAZOE, Toshiyuki SUDO, Michio ISHIKAWA
  • Patent number: 10194065
    Abstract: The present disclosure provides apparatuses and methods for color imaging and an increased field of view using spectrally encoded endoscopy techniques. At least one of the apparatuses includes an illumination unit having two or more spectrally dispersive gratings positioned, for example, on different planes or on the same plane but having grating vectors at an angle to each other such that bands of spectrally dispersed light propagating from the gratings propagate on different planes.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: January 29, 2019
    Assignee: Canon U.S.A., Inc.
    Inventors: Seiji Takeuchi, Jacob Schieffelin Brauer, Anderson T. Mach, Badr Elmaanaoui, Sarika Verma, Kenji Yamazoe, Toshiyuki Sudo, Michio Ishikawa
  • Patent number: 9733431
    Abstract: A noise reduction device capable of reducing noise over a wide frequency range and a detection apparatus including the same are provided. The noise reduction device includes a splitting unit configured to split pulsed light generated in a first period into three or more pulsed light beams, a delaying unit configured to provide the three or more pulsed light beams with different delay times, and a combining unit configured to combine the three or more pulsed light beams. Among the three or more pulsed light beams, two pulsed light beams whose delay times provided by the delaying unit are closest to each other are configured such that a difference between their delay times is equal to the first period.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: August 15, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventor: Michio Ishikawa
  • Publication number: 20170035281
    Abstract: The present disclosure provides apparatuses and methods for color imaging and an increased field of view using spectrally encoded endoscopy techniques. At least one of the apparatuses includes an illumination unit having two or more spectrally dispersive gratings positioned, for example, on different planes or on the same plane but having grating vectors at an angle to each other such that bands of spectrally dispersed light propagating from the gratings propagate on different planes.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 9, 2017
    Inventors: Seiji TAKEUCHI, Jacob Schieffelin BRAUER, Anderson T. MACH, Badr ELMAANAOUI, Sarika VERMA, Kenji YAMAZOE, Toshiyuki SUDO, Michio ISHIKAWA
  • Publication number: 20160147016
    Abstract: A noise reduction device capable of reducing noise over a wide frequency range and a detection apparatus including the same are provided. The noise reduction device includes a splitting unit configured to split pulsed light generated in a first period into three or more pulsed light beams, a delaying unit configured to provide the three or more pulsed light beams with different delay times, and a combining unit configured to combine the three or more pulsed light beams. Among the three or more pulsed light beams, two pulsed light beams whose delay times provided by the delaying unit are closest to each other are configured such that a difference between their delay times is equal to the first period.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 26, 2016
    Inventor: Michio Ishikawa
  • Patent number: 9216609
    Abstract: A radical etching apparatus comprising a vacuum chamber for a substrate to be treated; a pipe pathway, connected to the vacuum chamber, a zone for generating plasma and a gas introduction device through which N2 and at least one of H2 and NH3 can be introduced; a microwave applying microwaves to the interior of the pipe pathway; a gas introducer as a source of supply for F, between the vacuum chamber and the zone; and a shower plate. A method comprises introducing N2 and at least one of H2 and NH3 into a pipe pathway and applying microwaves. The gas mixture is decomposed by the plasma forming decomposition products as active species which react with F during transportation to the vacuum chamber to make radicals. An SiO2 layer on the substrate etched in the vacuum chamber, by irradiating the substrate with the radicals through the shower plate.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: December 22, 2015
    Assignee: ULVAC, INC.
    Inventors: Hiroaki Inoue, Yasushi Higuchi, Michio Ishikawa
  • Patent number: 9059105
    Abstract: Disclosed is an ashing apparatus and its method of manufacture wherein decrease in processing efficiency is suppressed. Specifically, a shower plate is arranged to face a substrate stage on which a substrate is placed, and diffuses oxygen radicals supplied into a chamber. A metal blocking plate is arranged between the shower plate and the substrate stage and has a through hole through which oxygen radicals pass. In addition, the metal blocking plate has a first layer, which is made of a metal same as the one exposed in the substrate, on the surface facing the substrate.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 16, 2015
    Assignee: Ulvac, Inc.
    Inventors: Masahisa Ueda, Takashi Kurimoto, Michio Ishikawa, Koukou Suu, Toshiya Yogo
  • Patent number: 8669191
    Abstract: A method for the formation of an Ni film is herein disclosed, which comprises the steps of maintaining the temperature of an Si substrate at a desired level in a vacuum chamber; introducing, into the vacuum chamber, a nickel alkylamidinate (in this organometal compound, the alkyl group is a member selected from the group consisting of a methyl group, an ethyl group, a butyl group and a propyl group), H2 gas and NH3 gas; and then forming an Ni film according to the CVD technique, wherein the film-forming temperature is set at a level between higher than 280° C. and not higher than 350° C.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: March 11, 2014
    Assignee: Ulvac, Inc.
    Inventors: Toshimitsu Uehigashi, Yasushi Higuchi, Michio Ishikawa, Harunori Ushikawa, Naoki Hanada
  • Publication number: 20130306599
    Abstract: A radical etching apparatus comprising a vacuum chamber for a substrate to be treated; a pipe pathway, connected to the vacuum chamber, a zone for generating plasma and with a gas introduction device through which N2 and at least one of H2 and NH3 can be introduced; a microwave applying microwaves to the interior of the pipe pathway; a gas introducer as a source of supply for F, between the vacuum chamber and the zone; and a shower plate. A method comprises introducing N2 and at least one of H2 gas and NH3 into a pipe pathway and applying microwaves. The gas mixture is decomposed by the plasma forming decomposition products as active species which react with F during transportation to a the vacuum chamber to make radicals. An SiO2 layer on a the substrate etched in the vacuum chamber, by irradiating the substrate with the radicals through a the shower plate.
    Type: Application
    Filed: February 1, 2012
    Publication date: November 21, 2013
    Applicant: ULVAC, INC.
    Inventors: Hiroaki Inoue, Yasushi Higuchi, Michio Ishikawa
  • Patent number: 8419854
    Abstract: In a film-forming apparatus in which two or more gases are used, a uniform film is formed. In a film-forming apparatus provided with a film-forming chamber and a shower head, the shower head is provided with a material gas diffusion chamber and a reactive gas diffusion chamber. A gas passage which communicates the material gas diffusion chamber and a material gas introduction pipe is constituted into multi-stages of one stage or more. Each stage has a gas passage represented by 2n-1 (where n is the number of stages). The first-stage gas passage has connected to the center thereof the material gas introduction pipe. Each of second-stage and subsequent-stage gas passages has connected to the center thereof connection holes which are provided on both ends of the previous-stage gas passages so as to be in communication with the previous-stage gas passages. Each of the final-stage gas passages is connected to the material gas diffusion chamber by connection holes formed on both ends of each of the gas passages.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: April 16, 2013
    Assignee: Ulvac, Inc.
    Inventors: Masanobu Hatanaka, Osamu Irino, Michio Ishikawa
  • Patent number: 8367542
    Abstract: A method for manufacturing a semiconductor device that improves the reliability of a metal cap layer and productivity. The method includes an insulation layer step of superimposing an insulation layer(11) on a semiconductor substrate (2) including an element region (2b), a recess step of forming a recess (12) in the insulation layer (11), a metal layer step of embedding a metal layer (13) in the recess (12), a planarization step of planarizing a surface of the insulation layer (11) and a surface of the metal layer (13) to be substantially flush with each other, and a metal cap layer step of forming a metal cap layer (16) containing at least zirconium element and nitrogen element on the surface of the insulation layer (11) and the surface of the metal layer (13) after the planarization step.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 5, 2013
    Assignee: ULVAC, Inc.
    Inventors: Masanobu Hatanaka, Kanako Tsumagari, Michio Ishikawa