Patents by Inventor Mihir Mudholkar

Mihir Mudholkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10439075
    Abstract: A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: October 8, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar
  • Patent number: 10431699
    Abstract: In one embodiment, a trench Schottky rectifier includes a termination trench and active trenches provided in a semiconductor layer. A first active trench is configured to be at a shallower depth than the termination trench to provide a trench depth difference. A second active trench is configured to be at a depth similar to the termination trench. The selected trench depth difference in combination with one or more of the other second active trench depth, the dopant concentration of the semiconductor layer, the thickness of the semiconductor layer, first active trench width to termination trench width, and/or dopant profile of the semiconductor layer provide a semiconductor device having improved performance characteristics.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: October 1, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar, Michael Thomason
  • Publication number: 20190288125
    Abstract: A Schottky device includes a plurality of mesa structures where one or more of the mesa structures includes a doped region having a multi-concentration dopant profile. In accordance with an embodiment, the Schottky device is formed from a semiconductor material of a first conductivity type. Trenches having sidewalls and floors are formed in the semiconductor material to form a plurality of mesa structures. A doped region having a multi-concentration impurity profile is formed in at least one trench, where the impurity materials of the doped region having the multi-concentration impurity profile are of a second conductivity type. A Schottky contact is formed to at least one of the mesa structures having the dope region with the multi-concentration impurity profile.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 19, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir QUDDUS, Mihir MUDHOLKAR, Jefferson W. HALL
  • Patent number: 10388801
    Abstract: A semiconductor device includes a region of semiconductor material having first and second opposing major surfaces. A trench structure includes a trench extending into the region of semiconductor material from the first major surface, wherein the first major surface defines a first horizontal plane in a cross-sectional view. The trench structure further includes a conductive material disposed within the trench and separated from the region of semiconductor material by a dielectric region. A Schottky contact region is disposed adjacent the first major surface on opposing sides of the trench structure, the Schottky contact region having an upper surface residing on a second horizontal plane in the cross-sectional view. The dielectric region comprises an uppermost surface and configured such that a major portion of the uppermost surface is disposed above the first horizontal plane in the cross-sectional view. The structure and method provide a semiconductor device with improved performance (e.g.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 20, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mihir Mudholkar, Mohammed T. Quddus, Ikhoon Shin, Scott M. Donaldson
  • Publication number: 20190237588
    Abstract: A semiconductor device includes a region of semiconductor material having first and second opposing major surfaces. A trench structure includes a trench extending into the region of semiconductor material from the first major surface, wherein the first major surface defines a first horizontal plane in a cross-sectional view. The trench structure further includes a conductive material disposed within the trench and separated from the region of semiconductor material by a dielectric region. A Schottky contact region is disposed adjacent the first major surface on opposing sides of the trench structure, the Schottky contact region having an upper surface residing on a second horizontal plane in the cross-sectional view. The dielectric region comprises an uppermost surface and configured such that a major portion of the uppermost surface is disposed above the first horizontal plane in the cross-sectional view. The structure and method provide a semiconductor device with improved performance (e.g.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 1, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mihir MUDHOLKAR, Mohammed T. QUDDUS, Ikhoon SHIN, Scott M. DONALDSON
  • Patent number: 10211060
    Abstract: A number of variations may include a method that may include depositing a first layer on a first semiconductor layer in an overlying position with respect to at least one trench structure formed in the first semiconductor epi layer. The first layer may include a first metal and a second metal. A second layer may comprise a material constructed and arranged to scavenge semiconductor material migrating from the first semiconductor layer during annealing may be deposited over the first layer. The first semiconductor layer may be subjected to at least a first annealing act to provide a first structure. At least a portion of the first structure may be stripped to remove any of the first layer not reacted with the semiconductor material to form a Schottky barrier structure during the first annealing act.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: February 19, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Michael Thomason, Mohammed Tanvir Quddus, James Morgan, Mihir Mudholkar, Scott Donaldson, Gordon M. Grivna
  • Patent number: 10177232
    Abstract: A Schottky device includes a plurality of mesa structures where one or more of the mesa structures includes a doped region having a multi-concentration dopant profile. In accordance with an embodiment, the Schottky device is formed from a semiconductor material of a first conductivity type. Trenches having sidewalls and floors are formed in the semiconductor material to form a plurality of mesa structures. A doped region having a multi-concentration impurity profile is formed between two trenches, where the impurity materials of the doped region having the multi-concentration impurity profile are of a second conductivity type. A Schottky contact is formed to at least one of the mesa structures having the doped region with the multi-concentration impurity profile.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: January 8, 2019
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar, Mingjiao Liu, Michael Thomason
  • Patent number: 9905500
    Abstract: In accordance with an embodiment, a semiconductor component includes a support having a first device receiving structure and a second device receiving structure and a contact extension that is common to the first and second device receiving structures. The first device receiving structure includes a device receiving area and the second device receiving structure includes a drain contact area. A III-N based semiconductor chip has a drain bond pad bonded to the drain contact area and a source bond pad bonded to the contact extension and a gate bond pad bonded to an interconnect. A portion of the silicon based semiconductor chip is bonded to the support device receiving area. In accordance with another embodiment, a method for manufacturing the semiconductor component includes coupling a III-N based semiconductor chip to a portion of the support a silicon based semiconductor chip to another portion of the support.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: February 27, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Ali Salih, Mihir Mudholkar, Chun-Li Liu, Jason McDonald
  • Patent number: 9859449
    Abstract: A method of forming a semiconductor includes a providing a termination trench and an active trench within a semiconductor layer. The active trench is configured to be at a shallower depth than the termination trench to provide a trench depth difference. The selected trench depth difference in combination with one or more of the dopant concentration of the semiconductor layer, the thickness of the semiconductor layer, active trench width to termination trench width, and/or dopant profile of the semiconductor layer provide a semiconductor device having improved performance characteristics.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: January 2, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar, Michael Thomason
  • Publication number: 20170323947
    Abstract: A Schottky device includes a plurality of mesa structures where one or more of the mesa structures includes a doped region having a multi-concentration dopant profile. In accordance with an embodiment, the Schottky device is formed from a semiconductor material of a first conductivity type. Trenches having sidewalls and floors are formed in the semiconductor material to form a plurality of mesa structures. A doped region having a multi-concentration impurity profile is formed in at least one trench, where the impurity materials of the doped region having the multi-concentration impurity profile are of a second conductivity type. A Schottky contact is formed to at least one of the mesa structures having the dope region with the multi-concentration impurity profile.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar, Mingjiao Liu, Michael Thomason
  • Publication number: 20170288027
    Abstract: A method of forming a semiconductor includes a providing a termination trench and an active trench within a semiconductor layer. The active trench is configured to be at a shallower depth than the termination trench to provide a trench depth difference. The selected trench depth difference in combination with one or more of the dopant concentration of the semiconductor layer, the thickness of the semiconductor layer, active trench width to termination trench width, and/or dopant profile of the semiconductor layer provide a semiconductor device having improved performance characteristics.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir QUDDUS, Mihir MUDHOLKAR, Michael THOMASON
  • Patent number: 9773895
    Abstract: A half-bridge circuit can include a high-side HEMT, a high-side switch transistor, a low-side HEMT, and a low-side switch transistor. The die substrates of the HEMTs can be coupled to the sources of their corresponding switch transistors. In another aspect, a packaged electronic device for a half-bridge circuit can have a design that can use shorter connectors that help to reduce parasitic inductance and resistance. In a further aspect, a packaged electronic device for a half-bridge circuit can include more than one connection along the bottom of the package allows less lead connections along the periphery of the packaged electronic device and can allow for a smaller package.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: September 26, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Peter Moens, Mihir Mudholkar, Joe Fulton, Philip Celaya, Stephen St. Germain, Chun-Li Liu, Jason McDonald, Alexander Young, Ali Salih
  • Patent number: 9716187
    Abstract: In one embodiment, a trench Schottky rectifier includes a termination trench and active trenches provided in a semiconductor layer. The active trenches are configured to be at a shallower depth than the termination trench to provide a trench depth difference. The selected trench depth difference in combination with one or more of the dopant concentration of the semiconductor layer, the thickness of the semiconductor layer, active trench width to termination trench width, and/or dopant profile of the semiconductor layer provide a semiconductor device having improved performance characteristics.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: July 25, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar, Michael Thomason
  • Patent number: 9716151
    Abstract: A Schottky device includes a plurality of mesa structures where one or more of the mesa structures includes a doped region having a multi-concentration dopant profile. In accordance with an embodiment, the Schottky device is formed from a semiconductor material of a first conductivity type. Trenches having sidewalk and floors are formed in the semiconductor material to form a plurality of mesa structures. A doped region having a multi-concentration impurity profile is formed in at least one trench, where the impurity materials of the doped region having the multi-concentration impurity profile are of a second conductivity type. A Schottky contact is formed to at least one of the mesa structures having the dope region with the multi-concentration impurity profile.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: July 25, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar, Mingjiao Liu, Michael Thomason
  • Patent number: 9647080
    Abstract: A Schottky device includes a barrier height adjustment layer in a portion of a semiconductor material. In accordance with an embodiment, the Schottky device is formed from a semiconductor material of a first conductivity type which has a barrier height adjustment layer of a second conductivity type that extends from a first major surface of the semiconductor material into the semiconductor material a distance that is less than a zero bias depletion boundary. A Schottky contact is formed in contact with the doped layer.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: May 9, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar, Mark Griswold, Ali Salih
  • Publication number: 20170076949
    Abstract: A number of variations may include a method that may include depositing a first layer on a first semiconductor layer in an overlying position with respect to at least one trench structure formed in the first semiconductor epi layer. The first layer may include a first metal and a second metal. A second layer may comprise a material constructed and arranged to scavenge semiconductor material migrating from the first semiconductor layer during annealing may be deposited over the first layer. The first semiconductor layer may be subjected to at least a first annealing act to provide a first structure. At least a portion of the first structure may be stripped to remove any of the first layer not reacted with the semiconductor material to form a Schottky barrier structure during the first annealing act.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 16, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Michael THOMASON, Mohammed Tanvir QUDDUS, James MORGAN, Mihir MUDHOLKAR, Scott DONALDSON, Gordon M. GRIVNA
  • Publication number: 20170025336
    Abstract: In accordance with an embodiment, a semiconductor component includes a support having a first device receiving structure and a second device receiving structure and a contact extension that is common to the first and second device receiving structures. The first device receiving structure includes a device receiving area and the second device receiving structure includes a drain contact area. A III-N based semiconductor chip has a drain bond pad bonded to the drain contact area and a source bond pad bonded to the contact extension and a gate bond pad bonded to an interconnect. A portion of the silicon based semiconductor chip is bonded to the support device receiving area. In accordance with another embodiment, a method for manufacturing the semiconductor component includes coupling a III-N based semiconductor chip to a portion of the support a silicon based semiconductor chip to another portion of the support.
    Type: Application
    Filed: July 6, 2016
    Publication date: January 26, 2017
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Ali Salih, Mihir Mudholkar, Chun-Li Liu, Jason McDonald
  • Patent number: 9552993
    Abstract: A number of variations may include a method that may include depositing a first layer on a first semiconductor epi layer (epitaxial layer) in an overlying position with respect to at least one trench structure formed in the first semiconductor epi layer. The first layer may include a first metal and a second metal. A second layer may comprise a material constructed and arranged to scavenge silicon migrating from the first semiconductor epi layer during annealing may be deposited over the first layer. The first semiconductor epi layer may be subjected to at least a first annealing act to provide a first structure. At least a portion of the first structure may be stripped to remove any of the first layer not reacted with silicon to form a silicide during the first annealing act.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: January 24, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Michael Thomason, Mohammed Tanvir Quddus, James Morgan, Mihir Mudholkar, Scott Donaldson, Gordon M Grivna
  • Publication number: 20160322969
    Abstract: A half-bridge circuit can include a high-side HEMT, a high-side switch transistor, a low-side HEMT, and a low-side switch transistor. The die substrates of the HEMTs can be coupled to the sources of their corresponding switch transistors. In another aspect, a packaged electronic device for a half-bridge circuit can have a design that can use shorter connectors that help to reduce parasitic inductance and resistance. In a further aspect, a packaged electronic device for a half-bridge circuit can include more than one connection along the bottom of the package allows less lead connections along the periphery of the packaged electronic device and can allow for a smaller package.
    Type: Application
    Filed: April 20, 2016
    Publication date: November 3, 2016
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji PADMANABHAN, Prasad VENKATRAMAN, Peter MOENS, Mihir MUDHOLKAR, Joe FULTON, Philip CELAYA, Stephen ST. GERMAIN, Chun-Li LIU, Jason MCDONALD, Alexander YOUNG, Ali SALIH
  • Patent number: 9478426
    Abstract: A number of variations may include a method that may include depositing a first layer on a first semiconductor epi layer (epitaxial layer) in an overlying position with respect to at least one trench structure formed in the first semiconductor epi layer. The layer may include a first metal and a second metal. The first semiconductor epi layer may be subjected to at least a first annealing act to provide a first structure. At least a portion of the first structure may be stripped to remove any of the first layer not reacted with silicon to form a silicide during the first annealing act. Thereafter, the stripped first structure may be subjected to a second annealing act.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: October 25, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Michael Thomason, Mohammed Tanvir Quddus, James Morgan, Mihir Mudholkar, Scott Donaldson