Patents by Inventor Mikio Kishimoto

Mikio Kishimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150313994
    Abstract: An object of the present invention is to provide surface-modified ferromagnetic iron oxide particles suitable for electromagnetic-induction cancer ablation, which have excellent heat generation properties and also have excellent dispersion stability in a medium for injection. The surface-modified iron oxide particles for cancer ablation of the present invention as a means for achieving the object are characterized in that a block copolymer of polyethylene glycol and polystyrene having a phosphorous acid group in the side chain is bound to the surface of ferromagnetic iron oxide particles having a plate-like shape with a length of 20 to 200 nm and a length-to-thickness ratio of 1.5 to 30 and having magnetic properties such that the coercivity is 30 to 300 Oe, the saturation magnetization is 20 to 80 emu/g, and the squareness ratio of the magnetic hysteresis loop is 0.20 to 0.50.
    Type: Application
    Filed: September 10, 2013
    Publication date: November 5, 2015
    Applicant: UNIVERSITY OF TSUKUBA
    Inventors: Tatsuya ODA, Yukio NAGASAKI, Kei ASAI, Eiji KITA, Hideto YANAGIHARA, Nobuhiro OHKOHCHI, Mikio KISHIMOTO
  • Patent number: 8163438
    Abstract: A composite electrolyte membrane uses a metal-oxide hydrate which has a number of hydration water molecules of 2.7 or more and 10 or less and/or which is in the form of particles having a particle diameter of 1 nm or more and 10 nm or less. The composite electrolyte membrane exhibits its expected original performance, has both a high proton conductivity and a low methanol permeability, and provides a high-output membrane electrolyte assembly for a fuel cell.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: April 24, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Takayuki Hirashige, Makoto Morishima, Mikio Kishimoto, Yuko Sawaki, Kazutaka Matsuo
  • Patent number: 8007691
    Abstract: A catalyst for electrodes in solid-polymer fuel cells which comprises metal oxide particles themselves. The catalyst contains fine transition-metal oxide particles having, in the main phase, a perovskite structure represented by the general formula ABO3 (wherein A represents one or more elements selected among lanthanum, strontium, cerium, calcium, yttrium, erbium, praseodymium, neodymium, samarium, europium, silicon, magnesium, barium, niobium, lead, bismuth, and antimony; and B represents one or more elements selected among iron, cobalt, manganese, copper, titanium, chromium, nickel, and molybdenum), the fine oxide particles having lattice constants satisfying the following relationship (1): 1.402<2b/(a+c)<1.422??(1) wherein a and c represent the minor-axis lengths of the perovskite type crystal lattice and b represents the major-axis length thereof.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 30, 2011
    Assignees: Hitachi Maxell Energy, Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuko Sawaki, Mikio Kishimoto, Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Shinichi Matsumoto
  • Patent number: 7829061
    Abstract: The zirconium oxide hydrate particles of the present invention are represented by the formula ZrO2.nH2O and have a mean primary particle size of 0.5 nm or more and 5 nm or less, and “n” in the formula represents a number greater than 2.5. Moreover, the method for producing of zirconium oxide hydrate particles of the present invention includes the step of preparing zirconium oxide hydrate particles by adding an aqueous zirconium salt solution to an aqueous alkaline solution while controlling the pH to 7.0 or more and 13.0 or less, and the step of subjecting the zirconium oxide hydrate particles to a hydrothermal treatment in the presence of water at a temperature of 50° C. or more and less than 110° C. for 3 hours or more.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: November 9, 2010
    Assignees: Hitachi Maxwell, Ltd., Hitachi, Ltd.
    Inventors: Yuko Sawaki, Kazutaka Matsuo, Mikio Kishimoto, Takayuki Hirashige, Makoto Morishima
  • Publication number: 20100151362
    Abstract: There are provided carbon particles supporting thereon fine particles of a perovskite type composite oxide, which can be used as a substitute for the existing platinum-supporting carbon particles or platinum metal particles commonly used in electrocatalysts for fuel cells, and which are significantly reduced in the amount of platinum to be used in comparison with the existing platinum-supporting carbon particles, and a process for manufacturing the same carbon particles. The fine particles of a perovskite type composite metal oxide which contains a noble metal element in its crystal lattice and has an average crystallite size of from 1 to 20 nm are supported on carbon particles.
    Type: Application
    Filed: September 25, 2006
    Publication date: June 17, 2010
    Inventors: Yuko Sawaki, Mikio Kishimoto, Haruyuki Nakanishi, Masahiro Imanishi
  • Patent number: 7700204
    Abstract: A magnetic recording medium comprising a nonmagnetic support and a magnetic layer formed on the support and containing a magnetic powder and a binder, wherein said magnetic powder comprises substantially spherical or ellipsoidal particles and at least one element selected from the group consisting of rare earth elements, silicon and aluminum, and has a Fe16N2 phase, an average particle size of 5 to 30 nm and an axis ratio (a ratio of a major axis to a minor axis) of 1 to 2. This magnetic recording medium achieves a high output and has excellent short wavelength recording properties, since it uses a magnetic powder having a very small particle size and has a very high coercive force and a saturation magnetization suitable for high density recording.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: April 20, 2010
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Yuji Sasaki, Mikio Kishimoto, Naoki Usuki
  • Patent number: 7597960
    Abstract: An infrared fluorescent particle comprising a functional group or a substance that is capable of binding to an analyte, wherein fluorescence at infrared wavelength is emitted from the particle upon exposure of the particle to excitation light at infrared wavelength. The infrared fluorescent particle of the present invention is capable of binding to the analyte. Due to a high penetration of the fluorescence and the excitation light into biological substances, the infrared fluorescent particle of the present invention can reduce an influence of luminescence, light absorption or light scattering which is occurred due to the analyte and the surrounding substances.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: October 6, 2009
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Masakazu Mitsunaga, Naoki Usuki, Kenji Kohno, Hisao Kanzaki, Mikio Kishimoto
  • Publication number: 20090246602
    Abstract: There are provided fine particle-carrying carbon particles, which can be used as a substitute for the existing platinum-carrying carbon particles or platinum metal particles commonly used in electrocatalysts for fuel cells or the like, and which are significantly reduced in the amount of platinum to be used in comparison with the existing platinum-carrying carbon particles, and an electrode for a fuel cell using the same carbon particles. The fine particle-carrying carbon particle comprises a carbon particle with an average particle diameter of from 20 to 70 nm, and fine particles of a metal oxide with an average crystallite size of from 1 to 20 nm, carried on the carbon particle, wherein the metal oxide contains a noble metal element such as a platinum element, and is represented by the formula: MOx in which the metal element M is partially substituted by the noble metal element.
    Type: Application
    Filed: September 25, 2006
    Publication date: October 1, 2009
    Inventors: Yuko Sawaki, Yoshinori Sato, Mikio Kishimoto, Haruyuki Nakanishi, Masahiro Imanishi
  • Publication number: 20090202869
    Abstract: Carbon particles having fine particles deposited thereon which can be used as a substitute for the carbon particles having platinum deposited thereon and metallic platinum particles which are presently in general use as, e.g., a catalyst for electrodes in fuel cells. Compared to the conventional carbon particles having platinum deposited thereon, etc., the carbon particles are effective in greatly reducing the amount of platinum to be used. The carbon particles are characterized by comprising carbon particles and, deposited on the surface of the carbon particles, fine particles of a perovskite type composite metal oxide in each of which fine noble-metal particles are present throughout the whole particle. Also provided is a process for producing the carbon particles.
    Type: Application
    Filed: June 12, 2007
    Publication date: August 13, 2009
    Inventors: Yuko Sawaki, Mikio Kishimoto, Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi
  • Publication number: 20090200519
    Abstract: A catalyst for electrodes in solid-polymer fuel cells which comprises metal oxide particles themselves. It can be used as a substituent for the carbon particles having platinum deposited thereon and platinum metal particles which are presently in general use as, e.g., a catalyst for electrodes in fuel cells, and has a possibility that the amount of platinum to be used can be greatly reduced as compared with the conventional carbon particles having platinum deposited thereon, etc.
    Type: Application
    Filed: June 12, 2007
    Publication date: August 13, 2009
    Inventors: Yuko Sawaki, Mikio Kishimoto, Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Shinichi Matsumoto
  • Patent number: 7510790
    Abstract: A magnetic powder consisting of substantially spherical or ellipsoidal particles comprising a transition metal which comprises iron and a rear earth element which is mainly present in the outer layer of the magnetic powder particles, and having a particle size of 5 to 200 nm, a coercive force of 80 to 400 kA/m and a saturation magnetization of 10 to 25 ?Wb/g.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: March 31, 2009
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Mikio Kishimoto, Yuji Sasaki, Yumiko Kitahata, legal representative, Hideaki Watanabe, Shinichi Kitahata
  • Patent number: 7494728
    Abstract: A magnetic tape comprising a non-magnetic support, a magnetic layer containing magnetic powder which is formed on one side of the non-magnetic support, a primer layer containing non-magnetic powder which is formed between the non-magnetic support and the magnetic layer, and a backcoat layer containing non-magnetic powder which is formed on the other side of the non-magnetic support, wherein the magnetic layer contains the magnetic powder which comprises plate, granular or ellipsoidal magnetic particles with a particle diameter of 5 to 50 nm, and has a thickness of 0.09 ?m or less, and wherein at least one of the primer layer and the backcoat layer contains non-magnetic plate particles with a particle diameter of 10 to 100 nm.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: February 24, 2009
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Sadamu Kuse, Tsugihiro Doi, Tetsutaro Inoue, Mikio Kishimoto
  • Publication number: 20090011239
    Abstract: The zirconium oxide hydrate particles of the present invention are represented by the formula ZrO2.nH2O and have a mean primary particle size of 0.5 nm or more and 5 nm or less, and “n” in the formula represents a number greater than 2.5. Moreover, the method for producing of zirconium oxide hydrate particles of the present invention includes the step of preparing zirconium oxide hydrate particles by adding an aqueous zirconium salt solution to an aqueous alkaline solution while controlling the pH to 7.0 or more and 13.0 or less, and the step of subjecting the zirconium oxide hydrate particles to a hydrothermal treatment in the presence of water at a temperature of 50° C. or more and less than 110° C. for 3 hours or more.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Applicants: HITACHI MAXELL, LTD., HITACHI, LTD
    Inventors: Yuko SAWAKI, Kazutaka Matsuo, Mikio Kishimoto, Takayuki Hirashige, Makoto Morishima
  • Publication number: 20080318107
    Abstract: A composite electrolyte membrane uses a metal-oxide hydrate which has a number of hydration water molecules of 2.7 or more and 10 or less and/or which is in the form of particles having a particle diameter of 1 nm or more and 10 nm or less. The composite electrolyte membrane exhibits its expected original performance, has both a high proton conductivity and a low methanol permeability, and provides a high-output membrane electrolyte assembly for a fuel cell.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 25, 2008
    Inventors: Takayuki Hirashige, Makoto Morishima, Mikio Kishimoto, Yuko Sawaki, Kazutaka Matsuo
  • Patent number: 7449235
    Abstract: An aqueous alkaline solution containing a tin salt dissolved therein is mixed with a zinc compound, and an aqueous solution of an indium salt is added to the mixture. The resultant hydroxide or hydrate containing tin, indium and zinc is treated by heating at a temperature of 110 to 300° C. in the present of water. Then, the resultant product is filtered, dried and treated by heating at a temperature of 300 to 1,000° C. in an air and further reduced at a temperature of 150 to 400° C. under a reducing atmosphere to obtain composite indium oxide particles of zinc oxide and tin-containing indium oxide, which have an average particle size of 5 to 100 nm. The resultant composite particles of zinc oxide and tin-containing indium oxide are suitably used to form a transparent conductive coating film having a UV-shielding effect.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: November 11, 2008
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Yuko Sawaki, Mikio Kishimoto
  • Patent number: 7445858
    Abstract: A magnetic recording medium comprising a non-magnetic support, at least one primer layer formed on one surface of the non-magnetic support, comprising a non-magnetic powder and a binder resin, at least one magnetic layer formed on the primer layer, comprising a magnetic powder and a binder resin, and a back layer formed on the other surface of the non-magnetic support, wherein the magnetic powder contained in the uppermost layer of the magnetic layer is a rare earth metal-iron type magnetic powder of substantially spherical or ellipsoidal particles comprising a rare earth element and iron or a transition metal which comprises iron, and has a number average particle size of 5 to 50 nm and an average axis ratio of 1 to 2, and the total thickness of the magnetic recording medium is less than 6 ?m. This magnetic recording medium can achieve an excellent block error rate.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: November 4, 2008
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Sadamu Kuse, Tsugihiro Doi, Tetsutaro Inoue, Mikio Kishimoto, Yuji Sasaki, Hideaki Watanabe
  • Publication number: 20080265208
    Abstract: An infrared fluorescent particle comprising a functional group or a substance that is capable of binding to an analyte, wherein fluorescence at infrared wavelength is emitted from the particle upon exposure of the particle to excitation light at infrared wavelength. The infrared fluorescent particle of the present invention is capable of binding to the analyte. Due to a high penetration of the fluorescence and the excitation light into biological substances, the infrared fluorescent particle of the present invention can reduce an influence of luminescence, light absorption or light scattering which is occurred due to the analyte and the surrounding substances.
    Type: Application
    Filed: June 24, 2008
    Publication date: October 30, 2008
    Inventors: Masakazu Mitsunaga, Naoki Usuki, Kenji Kohno, Hisao Kanzaki, Mikio Kishimoto
  • Patent number: 7416784
    Abstract: An infrared fluorescent particle comprising a functional group or a substance that is capable of binding to an analyte, wherein fluorescence at infrared wavelength is emitted from the particle upon exposure of the particle to excitation light at infrared wavelength. The infrared fluorescent particle of the present invention is capable of binding to the analyte. Due to a high penetration of the fluorescence and the excitation light into biological substances; the infrared fluorescent particle of the present invention can reduce an influence of luminescence, light absorption or light scattering which is occurred due to the analyte and the surrounding substances.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: August 26, 2008
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Masakazu Mitsunaga, Naoki Usuki, Kenji Kohno, Hisao Kanzaki, Mikio Kishimoto
  • Publication number: 20080141594
    Abstract: An aqueous solution of a metal salt to an alkaline aqueous solution to forma hydroxide or a hydrate of a metal, and the hydroxide or hydrate of the metal is heated at a temperature of 110 to 300° C. in the presence of water. Then, the hydroxide or hydrate of the metal is filtered and dried and then further heated at a temperature of 300 to 1200° C. in an air to form oxide particles such as the particles of cerium oxide, zirconium oxide, aluminum oxide silicon oxide, iron oxide, etc. Thereby the particles of cerium oxide, zirconium oxide, aluminum oxide silicon oxide, iron oxide, etc. having a plate-form shape and a particle size of from 10 nm to 100 nm in the plate direction of the particle are obtained. The non-magnetic particles, in particular, plate-form oxide particles of the present invention have a uniform particle size distribution, are less sintered or agglomerated, and have good crystallinity.
    Type: Application
    Filed: November 28, 2007
    Publication date: June 19, 2008
    Inventors: Mikio Kishimoto, Nobuko Kasajima, Yuko Sawaki, Kimihiko Kaneno, Yasumori Maeda
  • Patent number: 7381467
    Abstract: The present invention provides composite particles which have magnetism and simultaneously emit fluorescence with a variety of wavelengths, and which are suitable for use in the fields of biology, biochemistry or the like. The composite particles of the present invention comprise ferromagnetic iron oxide particles, fluorescent pigment particles and silica, and have an average particle size of 1 to 10 ?m, a coercive force of 2.39 to 11.94 kA/m (30 to 150 oersted), saturation magnetization of 0.5 to 40 A.m2/kg (0.5 to 40 emu/g). The peak value of the wavelength of fluorescence from the composite particle is in the range of 350 to 750 nm, when the composite particle is excited by light with a wavelength of 250 to 600 nm.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: June 3, 2008
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Satoko Arai, Mikio Kishimoto, Kenji Kohno, Masahiro Kusumoto, Yoshiaki Nishiya