Patents by Inventor Miles James Weida

Miles James Weida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150330893
    Abstract: An analysis assembly (12) for analyzing one or more physiological parameters of a person (10) comprises a sensor assembly (14) and an analyzer (16). The sensor assembly (14) includes a sampler (218) that collects a sample (220) from the person (10); and a signal generating apparatus (222) that directs a mid-infrared light beam (232) toward the sample (220) and performs spectroscopy on the sample (220) to generate a signal (215) that is based at least in part on the one or more physiological parameters of the person (10). The sampler (218) and the signal generating apparatus (222) can be positioned less than approximately one meter from the person (10) while the sample (220) is being collected and spectroscopically scanned to generate the signal (215). The analyzer (16) receives and analyzes the signal (215) to determine the presence of the one or more physiological parameters in the sample (220).
    Type: Application
    Filed: May 19, 2015
    Publication date: November 19, 2015
    Inventors: Paul Larson, William Chapman, Miles James Weida
  • Publication number: 20150323384
    Abstract: Spectrally analyzing an unknown sample (10A) includes (i) providing a spatially homogeneous region (10B) of the unknown sample (10A); (ii) directing a plurality of interrogation beams (16) at the spatially homogeneous region (10B) with a laser source (14), (iii) acquiring a separate output image (245) while the unknown sample (10A) is illuminated by each of the interrogation beams (16) with an image sensor (26A); and (iv) analyzing less than fifty output images (245) to analyze whether a characteristic is present in the unknown sample (10A) with a control system (28) that includes a processor. Each of the interrogation beams (16) is nominally monochromatic and has a different interrogation wavelength that is in the mid-infrared spectral range.
    Type: Application
    Filed: July 10, 2015
    Publication date: November 12, 2015
    Inventors: Benjamin Bird, Miles James Weida, Jeremy Rowlette
  • Publication number: 20140253714
    Abstract: An imaging microscope (12) for generating an image of a sample (10) comprises a beam source (14) that emits a temporally coherent illumination beam (20), the illumination beam (20) including a plurality of rays that are directed at the sample (10); an image sensor (18) that converts an optical image into an array of electronic signals; and an imaging lens assembly (16) that receives rays from the beam source (14) that are transmitted through the sample (10) and forms an image on the image sensor (18). The imaging lens assembly (16) can further receive rays from the beam source (14) that are reflected off of the sample (10) and form a second image on the image sensor (18). The imaging lens assembly (16) receives the rays from the sample (10) and forms the image on the image sensor (18) without splitting and recombining the rays.
    Type: Application
    Filed: October 25, 2012
    Publication date: September 11, 2014
    Applicant: Daylight Solutions Inc
    Inventors: Miles James Weida, Timothy Day
  • Patent number: 8718105
    Abstract: A laser source (10) for emitting an output beam (12) includes a first gain medium (16B) that generates a first beam (16A), a second gain medium (18B) that generates a second beam (18A), a common feedback assembly (28) positioned in the path of the first beam (16A) and the second beam (18), and a control system (32). The common feedback assembly (28) redirects at least a portion of the first beam (16A) back to the first gain medium (16B), and at least a portion of the second beam (18A) back to the second gain medium (18B). The control system (32) selectively and individually directs power to the first gain medium (16B) and the second gain medium (18). Additionally, the common feedback assembly (28) can include a feedback mover (46) that continuously adjusts the angle of incidence of the first beam (16A) and the second beam (18A) on the feedback assembly (28).
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: May 6, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Miles James Weida, David F. Arnone
  • Patent number: 8068521
    Abstract: A laser source (10) for emitting a set of sequential, different wavelength output beams (12) includes a gain medium (16), a feedback assembly (26) and a control system (30). The gain medium (16) includes a first facet (16A), and the gain medium (16) generates a beam (12A) that exits the first facet (16A). The feedback assembly (26) includes a feedback device (40) and a device mover (42). The feedback device (40) is positioned in the path of the beam (12A) that exits the first facet (16A) and the feedback device (40) redirects at least a portion of the beam (12A) back to the gain medium (16). The device mover (42) continuously adjusts an angle of incidence (?) of the beam (12A) on the feedback device (40). The control system (30) selectively directs pulses of power to the gain medium (16) as the device mover (42) is continuously adjusting the angle of incidence (?) of the beam (12A).
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: November 29, 2011
    Assignee: Daylight Solutions, Inc.
    Inventors: Miles James Weida, Russ Pritchett, David F. Amone
  • Publication number: 20110096800
    Abstract: A laser source (10) for emitting a set of sequential, different wavelength output beams (12) includes a gain medium (16), a feedback assembly (26) and a control system (30). The gain medium (16) includes a first facet (16A), and the gain medium (16) generates a beam (12A) that exits the first facet (16A). The feedback assembly (26) includes a feedback device (40) and a device mover (42). The feedback device (40) is positioned in the path of the beam (12A) that exits the first facet (16A) and the feedback device (40) redirects at least a portion of the beam (12A) back to the gain medium (16). The device mover (42) continuously adjusts an angle of incidence (?) of the beam (12A) on the feedback device (40). The control system (30) selectively directs pulses of power to the gain medium (16) as the device mover (42) is continuously adjusting the angle of incidence (?) of the beam (12A).
    Type: Application
    Filed: December 6, 2010
    Publication date: April 28, 2011
    Inventors: Miles James Weida, Russ Pritchett, David F. Arnone
  • Patent number: 7848382
    Abstract: A laser source (10) for emitting a set of sequential, different wavelength output beams (12) includes a gain medium (16), a feedback assembly (26) and a control system (30). The gain medium (16) includes a first facet (16A), and the gain medium (16) generates a beam (12A) that exits the first facet (16A). The feedback assembly (26) includes a feedback device (40) and a device mover (42). The feedback device (40) is positioned in the path of the beam (12A) that exits the first facet (16A) and the feedback device (40) redirects at least a portion of the beam (12A) back to the gain medium (16). The device mover (42) continuously adjusts an angle of incidence (?) of the beam (12A) on the feedback device (40). The control system (30) selectively directs pulses of power to the gain medium (16) as the device mover (42) is continuously adjusting the angle of incidence (?) of the beam (12A).
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: December 7, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Miles James Weida, Russ Pritchett, David F. Arnone
  • Patent number: 7826503
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: November 2, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, Miles James Weida
  • Patent number: 7738518
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 15, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, Miles James Weida
  • Publication number: 20100110198
    Abstract: An optical illuminator assembly (10) for locating an object (20) in inclement conditions (22) includes a MIR laser source (12) having a semiconductor laser that directly emits (without frequency conversion) an output beam (16) that is in the MIR range, the output beam (16) being useful for locating the object (20). Additionally, the optical illuminator assembly (10) can include a MIR imager (14) that captures an image (18) of light in the MIR range near the object (20). Further, the MIR imager (14) can include an image display (26) that displays the captured image (18). In a first example, the MIR laser source (12) and the MIR imager (14) are spaced apart, and the image (18) captured by the MIR imager (14) includes the output beam (16) from the MIR laser source (12). With this design, a person (28) operating a vehicle (24) will be able to locate the object 20 in inclement conditions 22. In a second example, the MIR laser source (12) and the MIR imager (14) are positioned in close proximity to each other.
    Type: Application
    Filed: March 30, 2009
    Publication date: May 6, 2010
    Applicant: Daylight Solutions, Inc.
    Inventors: Paul Larson, Eric B. Takeuchi, Miles James Weida, Timothy Day
  • Publication number: 20090225802
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Application
    Filed: September 4, 2008
    Publication date: September 10, 2009
    Inventors: Timothy Day, Miles James Weida
  • Publication number: 20090213882
    Abstract: A laser source (10) for emitting a set of sequential, different wavelength output beams (12) includes a gain medium (16), a feedback assembly (26) and a control system (30). The gain medium (16) includes a first facet (16A), and the gain medium (16) generates a beam (12A) that exits the first facet (16A). The feedback assembly (26) includes a feedback device (40) and a device mover (42). The feedback device (40) is positioned in the path of the beam (12A) that exits the first facet (16A) and the feedback device (40) redirects at least a portion of the beam (12A) back to the gain medium (16). The device mover (42) continuously adjusts an angle of incidence (?) of the beam (12A) on the feedback device (40). The control system (30) selectively directs pulses of power to the gain medium (16) as the device mover (42) is continuously adjusting the angle of incidence (?) of the beam (12A).
    Type: Application
    Filed: January 13, 2009
    Publication date: August 27, 2009
    Inventors: Miles James Weida, Russ Pritchett, David F. Arnone
  • Publication number: 20090159798
    Abstract: An imaging system (10) for imaging an emitting gas (12) includes an imager (16) and a laser source (20). The imager (16) captures an image (18) of light in the mid-infrared (MIR) range. The laser source (20) includes a semiconductor laser (334) that directly emits an output beam (26) that is in the MIR range. The output beam (26) may be adapted to backscatter near and/or be absorbed by the emitting gas (12). Thus, when an emitting gas (12) is present, the gas (12) may absorb and attenuate the backscattered light. As a result thereof, a shadow or contrast (18A) corresponding to the emitting gas (12) may be visible in the image (18) that is captured by the imager (16).
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Inventors: Miles James Weida, Timothy Day, Eric B. Takeuchi
  • Patent number: 7424042
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: September 9, 2008
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, Miles James Weida
  • Publication number: 20080075133
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Application
    Filed: September 22, 2006
    Publication date: March 27, 2008
    Inventors: Timothy Day, Miles James Weida