Patents by Inventor Milind Weling

Milind Weling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9331276
    Abstract: A nonvolatile resistive memory element includes an oxygen-gettering layer. The oxygen-gettering layer is formed as part of an electrode stack, and is more thermodynamically favorable in gettering oxygen than other layers of the electrode stack. The Gibbs free energy of formation (?fG°) of an oxide of the oxygen-gettering layer is less (i.e., more negative) than the Gibbs free energy of formation of an oxide of the adjacent layers of the electrode stack. The oxygen-gettering layer reacts with oxygen present in the adjacent layers of the electrode stack, thereby preventing this oxygen from diffusing into nearby silicon layers to undesirably increase an SiO2 interfacial layer thickness in the memory element and may alternately be selected to decrease such thickness during subsequent processing.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: May 3, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Dipankar Pramanik, Milind Weling
  • Patent number: 9246094
    Abstract: Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. The resistive switching nonvolatile memory cells may include a first layer disposed. The first layer may be operable as a bottom electrode. The resistive switching nonvolatile memory cells may also include a second layer disposed over the first layer. The second layer may be operable as a resistive switching layer that is configured to switch between a first resistive state and a second resistive state. The resistive switching nonvolatile memory cells may include a third layer disposed over the second layer. The third layer may be operable as a resistive layer that is configured to determine, at least in part, an electrical resistivity of the resistive switching nonvolatile memory element. The third layer may include a semi-metallic material. The resistive switching nonvolatile memory cells may include a fourth layer that may be operable as a top electrode.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: January 26, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Federico Nardi, Milind Weling
  • Publication number: 20160020392
    Abstract: A resistive-switching memory (ReRAM cell) has a current-limiting electrode layer that combines the functions of an embedded resistor, an outer electrode, and an intermediate electrode, reducing the thickness of the ReRAM stack and simplifying the fabrication process. The materials include compound nitrides of a transition metal and one of aluminum, boron, or silicon. In experiments with tantalum silicon nitride, peak yield in the desired resistivity range corresponded to ˜24 at % silicon and ˜32 at % nitrogen, believed to optimize the trade-off between inhibiting TaSi2 formation and minimizing nitrogen diffusion. A binary metal nitride may be formed at one or more of the interfaces between the current-limiting electrode and neighboring layers such as metal-oxide switching layers.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 21, 2016
    Inventors: Yun Wang, Federico Nardi, Milind Weling
  • Patent number: 9231203
    Abstract: Provided are memory cells, such as resistive random access memory (ReRAM) cells, and methods of fabricating such cells. A cell includes an embedded resistor and resistive switching layer connected in series within the embedded resistor. The embedded resistor prevents excessive electrical currents through the resistive switching layer, especially when the resistive switching layer is switched into its low resistive state. The embedded resistor includes a stoichiometric nitride that has a bandgap of less than 2 eV. The embedded resistor is configured to maintain a substantially constant resistance throughout fabrication and operation of the cell, such as annealing the cell and subjecting the cell to forming and switching signals. The stoichiometric nitride may be one of hafnium nitride, zirconium nitride, or titanium nitride. The embedded resistor may also include a dopant, such as tantalum, niobium, vanadium, tungsten, molybdenum, or chromium.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: January 5, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Mihir Tendulkar, Milind Weling
  • Patent number: 9224951
    Abstract: A resistive-switching memory (ReRAM cell) has a current-limiting electrode layer that combines the functions of an embedded resistor, an outer electrode, and an intermediate electrode, reducing the thickness of the ReRAM stack and simplifying the fabrication process. The materials include compound nitrides of a transition metal and one of aluminum, boron, or silicon. In experiments with tantalum silicon nitride, peak yield in the desired resistivity range corresponded to ˜24 at % silicon and ˜32 at % nitrogen, believed to optimize the trade-off between inhibiting TaSi2 formation and minimizing nitrogen diffusion. A binary metal nitride may be formed at one or more of the interfaces between the current-limiting electrode and neighboring layers such as metal-oxide switching layers.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: December 29, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Federico Nardi, Milind Weling
  • Publication number: 20150188045
    Abstract: Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. The resistive switching nonvolatile memory cells may include a first layer disposed. The first layer may be operable as a bottom electrode. The resistive switching nonvolatile memory cells may also include a second layer disposed over the first layer. The second layer may be operable as a resistive switching layer that is configured to switch between a first resistive state and a second resistive state. The resistive switching nonvolatile memory cells may include a third layer disposed over the second layer. The third layer may be operable as a resistive layer that is configured to determine, at least in part, an electrical resistivity of the resistive switching nonvolatile memory element. The third layer may include a semi-metallic material. The resistive switching nonvolatile memory cells may include a fourth layer that may be operable as a top electrode.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Applicant: Intermolecular Inc.
    Inventors: Yun Wang, Federico Nardi, Milind Weling
  • Publication number: 20150187841
    Abstract: Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A ReRAM cell includes an embedded resistor and a variable resistance layer that are interconnected in series by, for example, stacking the two. The embedded resistor prevents excessive electrical currents through the variable resistance layer thereby preventing its over-programming. The embedded resistor is configured to maintain a constant resistance during the operation of the ReRAM cell, such as applying switching currents and changing the resistance of the variable resistance layer. Specifically, the embedded resistor may be electrically broken down during fabrication of the ReRAM cell to improve the subsequent stability of the embedded resistance to electrical fields during operation of the ReRAM cell. The embedded resistor may be made from materials that allow this initial breakdown and to avoid future breakdowns, such metal silicon nitrides, metal aluminum nitrides, and metal boron nitrides.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Applicant: Intermolecular Inc.
    Inventors: Yun Wang, Mihir Tendulkar, Milind Weling
  • Publication number: 20150155485
    Abstract: A nonvolatile resistive memory element includes an oxygen-gettering layer. The oxygen-gettering layer is formed as part of an electrode stack, and is more thermodynamically favorable in gettering oxygen than other layers of the electrode stack. The Gibbs free energy of formation (?fG°) of an oxide of the oxygen-gettering layer is less (i.e., more negative) than the Gibbs free energy of formation of an oxide of the adjacent layers of the electrode stack. The oxygen-gettering layer reacts with oxygen present in the adjacent layers of the electrode stack, thereby preventing this oxygen from diffusing into nearby silicon layers to undesirably increase an SiO2 interfacial layer thickness in the memory element and may alternately be selected to decrease such thickness during subsequent processing.
    Type: Application
    Filed: February 10, 2015
    Publication date: June 4, 2015
    Inventors: Tony P. Chiang, Dipankar Pramanik, Milind Weling
  • Patent number: 8981332
    Abstract: A nonvolatile resistive memory element includes an oxygen-gettering layer. The oxygen-gettering layer is formed as part of an electrode stack, and is more thermodynamically favorable in gettering oxygen than other layers of the electrode stack. The Gibbs free energy of formation (?fG°) of an oxide of the oxygen-gettering layer is less (i.e., more negative) than the Gibbs free energy of formation of an oxide of the adjacent layers of the electrode stack. The oxygen-gettering layer reacts with oxygen present in the adjacent layers of the electrode stack, thereby preventing this oxygen from diffusing into nearby silicon layers to undesirably increase an SiO2 interfacial layer thickness in the memory element and may alternately be selected to decrease such thickness during subsequent processing.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Dipankar Pramanik, Milind Weling
  • Patent number: 8912518
    Abstract: Provided are semiconductor devices, such as resistive random access memory (ReRAM) cells, that include current limiting layers formed from doped metal oxides and/or nitrides. These current limiting layers may have resistivities of at least about 1 Ohm-cm. This resistivity level is maintained even when the layers are subjected to strong electrical fields and/or high temperature annealing. In some embodiments, the breakdown voltage of a current limiting layer may be at least about 8V. Some examples of such current limiting layers include titanium oxide doped with niobium, tin oxide doped with antimony, and zinc oxide doped with aluminum. Dopants and base materials may be deposited as separate sub-layers and then redistributed by annealing or may be co-deposited using reactive sputtering or co-sputtering. The high resistivity of the layers allows scaling down the size of the semiconductor devices including these layer while maintaining their performance.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 16, 2014
    Assignee: Intermolecular, Inc.
    Inventors: David Chi, Vidyut Gopal, Minh Huu Le, Minh Anh Nguyen, Dipankar Pramanik, Milind Weling
  • Publication number: 20140268993
    Abstract: A nonvolatile resistive memory element includes an oxygen-gettering layer. The oxygen-gettering layer is formed as part of an electrode stack, and is more thermodynamically favorable in gettering oxygen than other layers of the electrode stack. The Gibbs free energy of formation (?fG°) of an oxide of the oxygen-gettering layer is less (i.e., more negative) than the Gibbs free energy of formation of an oxide of the adjacent layers of the electrode stack. The oxygen-gettering layer reacts with oxygen present in the adjacent layers of the electrode stack, thereby preventing this oxygen from diffusing into nearby silicon layers to undesirably increase an SiO2 interfacial layer thickness in the memory element and may alternately be selected to decrease such thickness during subsequent processing.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Tony P. Chiang, Dipankar Pramanik, Milind Weling
  • Publication number: 20140124725
    Abstract: Provided are semiconductor devices, such as resistive random access memory (ReRAM) cells, that include current limiting layers formed from doped metal oxides and/or nitrides. These current limiting layers may have resistivities of at least about 1 Ohm-cm. This resistivity level is maintained even when the layers are subjected to strong electrical fields and/or high temperature annealing. In some embodiments, the breakdown voltage of a current limiting layer may be at least about 8V. Some examples of such current limiting layers include titanium oxide doped with niobium, tin oxide doped with antimony, and zinc oxide doped with aluminum. Dopants and base materials may be deposited as separate sub-layers and then redistributed by annealing or may be co-deposited using reactive sputtering or co-sputtering. The high resistivity of the layers allows scaling down the size of the semiconductor devices including these layer while maintaining their performance.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: David Chi, Vidyut Gopal, Minh Huu Le, Minh Anh Nguyen, Dipankar Pramanik, Milind Weling
  • Patent number: 8716135
    Abstract: Methods of semiconductor device fabrication techniques using double patterning are disclosed. According to various embodiments of the invention, methods of semiconductor device fabrication using self-aligned double patterning are provided. Particular embodiments of the invention allow creation of logic circuit patterns using two lithographic operations. One embodiment of the invention employs self-aligned double patterning to define two or more sets of parallel line features with a connection feature between the sets. In such embodiments, the sets of parallel line features along with the connection features are formed using two lithographic masks, without the need for an additional mask layer to form the connection. In other embodiments, other features in addition to the connection can be added in the same mask layer.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: May 6, 2014
    Assignee: Cadence Design Systems, Inc.
    Inventors: Judy Huckabay, Milind Weling, Abdurrahman Sezginer
  • Patent number: 8679981
    Abstract: Various embodiments of the invention provide systems and methods for semiconductor device fabrication and generation of photomasks for patterning a target layout of line features and large features. Embodiments of the invention are directed towards systems and methods using self-aligned double pattern to define the target layout of line features and large features.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: March 25, 2014
    Assignee: Cadence Design Systems, Inc.
    Inventors: Milind Weling, Judy Huckabay, Abdurrahman Sezginer
  • Patent number: 8656321
    Abstract: Methods of semiconductor device fabrication techniques using double patterning are disclosed. According to various embodiments of the invention, methods of semiconductor device fabrication using self-aligned double patterning are provided. Particular embodiments of the invention allow creation of logic circuit patterns using two lithographic operations. One embodiment of the invention employs self-aligned double patterning to define two or more sets of parallel line features with a connection feature between two adjacent sets. In such embodiment, the sets of parallel line features along with the connection features are formed using two lithographic masks, without a need for an additional mask layer to form the connection features. In other embodiments, other features in addition to the connection features can be added in the same mask layer.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: February 18, 2014
    Assignee: Cadence Design Systems, Inc.
    Inventors: Judy Huckabay, Milind Weling, Abdurrahman Sezginer
  • Patent number: 8440569
    Abstract: Methods of semiconductor device fabrication are disclosed. An exemplary method includes processes of depositing a first pattern on a semiconductor substrate, wherein the first pattern defines wide and narrow spaces; depositing spacer material over the first pattern on the substrate; etching the spacer material such that the spacer material is removed from horizontal surfaces of the substrate and the first pattern but remains adjacent to vertical surfaces of a wide space defined by the first pattern and remains within narrow a space defined by the first pattern; and removing the first pattern from the substrate. In one embodiment, the first pattern can comprise sacrificial material, which can include, for example, polysilicon material. The deposition can comprise physical vapor deposition, chemical vapor deposition, electrochemical deposition, molecular beam epitaxy, atomic layer deposition or other deposition techniques.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: May 14, 2013
    Assignee: Cadence Design Systems, Inc.
    Inventors: Milind Weling, Abdurrahman Sezginer
  • Patent number: 7856613
    Abstract: Various embodiments of the invention provide systems and methods for semiconductor device fabrication and generation of photomasks for patterning a target layout of line features and large features. Embodiments of the invention are directed towards systems and methods using self-aligned double pattern to define the target layout of line features and large features.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: December 21, 2010
    Assignee: Cadence Design Systems, Inc.
    Inventors: Milind Weling, Judy Huckabay, Abdurrahman Sezginer
  • Publication number: 20090146322
    Abstract: Methods of semiconductor device fabrication are disclosed. An exemplary method includes processes of depositing a first pattern on a semiconductor substrate, wherein the first pattern defines wide and narrow spaces; depositing spacer material over the first pattern on the substrate; etching the spacer material such that the spacer material is removed from horizontal surfaces of the substrate and the first pattern but remains adjacent to vertical surfaces of a wide space defined by the first pattern and remains within narrow a space defined by the first pattern; and removing the first pattern from the substrate. In one embodiment, the first pattern can comprise sacrificial material, which can include, for example, polysilicon material. The deposition can comprise physical vapor deposition, chemical vapor deposition, electrochemical deposition, molecular beam epitaxy, atomic layer deposition or other deposition techniques.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 11, 2009
    Inventors: MILIND WELING, Abdurrahman Sezginer
  • Patent number: 7018282
    Abstract: The present invention comprises a customized polishing pad for use in a wafer polishing machine. The polishing pad of the present invention includes a polishing surface integral with the polishing pad. The polishing surface is adapted to frictionally contact a wafer in the polishing machine, thereby polishing the wafer. The polishing surface of the polishing pad includes at least two areas, where each area is adapted to frictionally contact the wafer and achieve a polishing effect specific for that area. A customized polishing effect is achieved by the polishing pad of the present invention when the wafer is selectively moved frictionally against the at least two areas by the wafer polishing machine.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: March 28, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Charles Franklin Drill, Milind Weling
  • Patent number: 6572439
    Abstract: The present invention comprises a customized polishing pad for use in a wafer polishing machine. The polishing pad of the present invention includes a polishing surface integral with the polishing pad. The polishing surface is adapted to frictionally contact a wafer in the polishing machine, thereby polishing the wafer. The polishing surface of the polishing pad includes at least two areas, where each area is adapted to frictionally contact the wafer and achieve a polishing effect specific for that area. A customized polishing effect is achieved by the polishing pad of the present invention when the wafer is selectively moved frictionally against the at least two areas by the wafer polishing machine.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: June 3, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Charles Franklin Drill, Milind Weling