Patents by Inventor Milos Toth

Milos Toth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160189920
    Abstract: A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 30, 2016
    Applicant: FEI Company
    Inventors: David H. Narum, Milos Toth, Steven Randolph, Aurelien Philippe Jean Maclou Botman
  • Patent number: 9255339
    Abstract: A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or microelectromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: February 9, 2016
    Assignee: FEI Company
    Inventors: Aurelien Philippe Jean Maclou Botman, Milos Toth, Steven Randolph, David H. Narum
  • Publication number: 20160020068
    Abstract: Beam-induced etching uses a work piece maintained at a temperature near the boiling point of a precursor material, but the temperature is sufficiently high to desorb reaction byproducts. In one embodiment, NF3 is used as a precursor gas for electron-beam induced etching of silicon at a temperature below room temperature.
    Type: Application
    Filed: July 17, 2015
    Publication date: January 21, 2016
    Inventors: Aiden Martin, Milos Toth
  • Patent number: 9123506
    Abstract: Beam-induced etching uses a work piece maintained at a temperature near the boiling point of a precursor material, but the temperature is sufficiently high to desorb reaction byproducts. In one embodiment, NF3 is used as a precursor gas for electron-beam induced etching of silicon at a temperature below room temperature.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: September 1, 2015
    Assignee: FEI COMPANY
    Inventors: Aiden Martin, Milos Toth
  • Publication number: 20150099071
    Abstract: Material is deposited in a desired pattern by spontaneous deposition of precursor gas at regions of a surface that are prepared using a beam to provide conditions to support the initiation of the spontaneous reaction. Once the reaction is initiated, it continues in the absence of the beam at the regions of the surface at which the reaction was initiated.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Applicant: FEI Company
    Inventors: Aurélien Philippe Jean Maclou Botman, Steven Randolph, Milos Toth
  • Patent number: 8921811
    Abstract: The current invention includes methods and apparatuses for processing, that is, altering and imaging, a sample in a high pressure charged particle beam system. Embodiments of the invention include a cell in which the sample is positioned during high pressure charged particle beam processing. The cell reduces the amount of gas required for processing, thereby allowing rapid introduction, exhaustion, and switching between gases and between processing and imaging modes. Maintaining the processes gases within the cell protects the sample chamber and column from contact with the gases. In some embodiments, the temperature of the cell walls and the sample can be controlled.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: December 30, 2014
    Assignee: FEI Company
    Inventors: Milos Toth, Rae Knowles
  • Publication number: 20140363978
    Abstract: Beam-induced etching uses a work piece maintained at a temperature near the boiling point of a precursor material, but the temperature is sufficiently high to desorb reaction byproducts. In one embodiment, NF3 is used as a precursor gas for electron-beam induced etching of silicon at a temperature below room temperature.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 11, 2014
    Inventors: Aiden Martin, Milos Toth
  • Patent number: 8853592
    Abstract: A charged particle beam and a laser beam are used together to micromachine a substrate. A first beam alters the state of a region of the work piece, and the second beam removes material whose state was altered. In one embodiment, an ion beam can create photon absorbing defects to lower the local ablation threshold, allowing the laser beam to remove material in a region defined by the ion beam. The combination of laser beam and charged particle beam allows the creation of features similar in size to the charged particle beam spot size, at milling rates greater than charged particle processing because of the increased energy provided by the laser beam.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: October 7, 2014
    Assignee: FEI Company
    Inventors: Marcus Straw, Amin Samsavar, Milos Toth, Mark Utlaut
  • Patent number: 8853078
    Abstract: Material is deposited in a desired pattern by spontaneous deposition of precursor gas at regions of a surface that are prepared using a beam to provide conditions to support the initiation of the spontaneous reaction. Once the reaction is initiated, it continues in the absence of the beam at the regions of the surface at which the reaction was initiated.
    Type: Grant
    Filed: January 30, 2011
    Date of Patent: October 7, 2014
    Assignee: FEI Company
    Inventors: Aurelien Philippe Jean Maclou Botman, Steven Randolph, Milos Toth
  • Publication number: 20140054267
    Abstract: An improved method for laser processing that prevents material redeposition during laser ablation but allows material to be removed at a high rate. In a preferred embodiment, laser ablation is performed in a chamber filled with high pressure precursor (etchant) gas so that sample particles ejected during laser ablation will react with the precursor gas in the gas atmosphere of the sample chamber. When the ejected particles collide with precursor gas particles, the precursor is dissociated, forming a reactive component that binds the ablated material. In turn, the reaction between the reactive dissociation by-product and the ablated material forms a new, volatile compound that can be pumped away in a gaseous state rather than redepositing onto the sample.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 27, 2014
    Applicant: FEI Company
    Inventors: Milos Toth, Marcus Straw
  • Patent number: 8629416
    Abstract: An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 14, 2014
    Assignee: FEI Company
    Inventors: Marcus Straw, Milos Toth, Steven Randolph, Michael Lysaght, Mark Utlaut
  • Patent number: 8617668
    Abstract: A method of depositing a material on a work piece surface. The method comprising providing a deposition precursor gas at the work piece surface; providing a purification compound including a nitrogen-containing compound at the work piece surface; and directing a beam toward a local region on the work piece surface, the beam causing decomposition of the precursor gas to fabricate a deposit on the work piece surface, the deposited material including a contaminant, the purification compound causing a reduction in the concentration of the contaminant and providing a deposited material that includes less contamination than a material deposited using the same methodology but without using a purification compound.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: December 31, 2013
    Assignee: FEI Company
    Inventors: Milos Toth, Charlene Lobo, Steven Randolph, Clive Chandler
  • Patent number: 8598542
    Abstract: Electron-beam-induced chemical reactions with precursor gases are controlled by adsorbate depletion control. Adsorbate depletion can be controlled by controlling the beam current, preferably by rapidly blanking the beam, and by cooling the substrate. The beam preferably has a low energy to reduce the interaction volume. By controlling the depletion and the interaction volume, a user has the ability to produce precise shapes.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: December 3, 2013
    Assignee: FEI Company
    Inventors: Milos Toth, Richard J. Young, Alexander Henstra, Alan Frank de Jong, Johannes Jacobus Lambertus Mulders
  • Patent number: 8524139
    Abstract: An improved method for laser processing that prevents material redeposition during laser ablation but allows material to be removed at a high rate. In a preferred embodiment, laser ablation is performed in a chamber filled with high pressure precursor (etchant) gas so that sample particles ejected during laser ablation will react with the precursor gas in the gas atmosphere of the sample chamber. When the ejected particles collide with precursor gas particles, the precursor is dissociated, forming a reactive component that binds the ablated material. In turn, the reaction between the reactive dissociation by-product and the ablated material forms a new, volatile compound that can be pumped away in a gaseous state rather than redepositing onto the sample.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 3, 2013
    Assignee: FEI Compay
    Inventors: Milos Toth, Marcus Straw
  • Publication number: 20130068611
    Abstract: A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: FEI Company
    Inventors: Aurelien Philippe Jean Maclou Botman, Milos Toth, Steven Randolph, David H. Narum
  • Patent number: 8357894
    Abstract: An improved microcalorimeter-type energy dispersive x-ray spectrometer provides sufficient energy resolution and throughput for practical high spatial resolution x-ray mapping of a sample at low electron beam energies. When used with a dual beam system that provides the capability to etch a layer from the sample, the system can be used for three-dimensional x-ray mapping. A preferred system uses an x-ray optic having a wide-angle opening to increase the fraction of x-rays leaving the sample that impinge on the detector and multiple detectors to avoid pulse pile up.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: January 22, 2013
    Assignee: FEI Company
    Inventors: Milos Toth, Michael R. Scheinfein, Eric Silver, David Narum
  • Patent number: 8303833
    Abstract: A method for fabrication of microscopic structures that uses a beam process, such as beam-induced decomposition of a precursor, to deposit a mask in a precise pattern and then a selective, plasma beam is applied, comprising the steps of first creating a protective mask upon surface portions of a substrate using a beam process such as an electron beam, focused ion beam (FIB), or laser process, and secondly etching unmasked substrate portions using a selective plasma beam etch process. Optionally, a third step comprising the removal of the protective mask may be performed with a second, materially oppositely selective plasma beam process.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: November 6, 2012
    Assignee: FEI Company
    Inventors: Milos Toth, Noel Smith
  • Patent number: 8299432
    Abstract: A scanning transmission electron microscope operated with the sample in a high pressure environment. A preferred detector uses gas amplification by converting either scattered or unscattered transmitted electrons to secondary electrons for efficient gas amplification.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: October 30, 2012
    Assignee: FEI Company
    Inventors: Milos Toth, William Ralph Knowles, Rae Knowles, legal representative
  • Publication number: 20120200007
    Abstract: An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 9, 2012
    Applicant: FEI COMPANY
    Inventors: Marcus Straw, Milos Toth, Steven Randolph, Michael Lysaght, Mark Utlaut
  • Publication number: 20120196440
    Abstract: Material is deposited in a desired pattern by spontaneous deposition of precursor gas at regions of a surface that are prepared using a beam to provide conditions to support the initiation of the spontaneous reaction. One the reaction is initiated, it continues in the absence of the beam at the regions of the surface at which the reaction was initiated.
    Type: Application
    Filed: January 30, 2011
    Publication date: August 2, 2012
    Applicant: FEI COMPANY
    Inventors: Aurelien Philippe Jean Maclou Botman, Steven Randolph, Milos Toth