Patents by Inventor Min-Chieh Yang

Min-Chieh Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7303962
    Abstract: A complementary metal-oxide-semiconductor (CMOS) device comprising a substrate, a first type of metal-oxide-semiconductor (MOS) transistor, a second type of MOS transistor, an etching stop layer, a first stress layer and a second stress layer is provided. The substrate has a first and a second active region. The first active region is isolated from the second active region through an isolation structure. The first type of MOS transistor is disposed in the first active region of the substrate and the second type of MOS transistor is disposed in the second active region of the substrate. The etching stop layer covers conformably the first type of MOS transistor, the second type of MOS transistor and the isolation structure. The first stress layer is disposed on the etching stop layer in the first active region and the second stress layer is disposed on the etching stop layer in the second active region.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: December 4, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Pei-Tu Chou, Min-Chieh Yang, Wen-Han Hung
  • Publication number: 20070111452
    Abstract: A complementary metal-oxide-semiconductor (CMOS) device comprising a substrate, a first type of metal-oxide-semiconductor (MOS) transistor, a second type of MOS transistor, an etching stop layer, a first stress layer and a second stress layer is provided. The substrate has a first and a second active region. The first active region is isolated from the second active region through an isolation structure. The first type of MOS transistor is disposed in the first active region of the substrate and the second type of MOS transistor is disposed in the second active region of the substrate. The etching stop layer covers conformably the first type of MOS transistor, the second type of MOS transistor and the isolation structure. The first stress layer is disposed on the etching stop layer in the first active region and the second stress layer is disposed on the etching stop layer in the second active region.
    Type: Application
    Filed: November 16, 2005
    Publication date: May 17, 2007
    Inventors: Pei-Yu Chou, Min-Chieh Yang, Wen-Han Hung
  • Publication number: 20070111420
    Abstract: A complementary metal-oxide-semiconductor (CMOS) device comprising a substrate, a first type of metal-oxide-semiconductor (MOS) transistor, a second type of MOS transistor, an etching stop layer, a first stress layer and a second stress layer is provided. The substrate has a first active region and a second active region. The first active region is isolated from the second active region through an isolation structure. The first type of MOS transistor is disposed in the first active region of the substrate; the second type of MOS transistor is disposed in the second active region of the substrate. The etching stop layer covers conformably the first type of MOS transistor, the second type of MOS transistor and the isolation structure. The first stress layer is disposed on the etching stop layer in the first active region and the second stress layer is disposed on the etching stop layer in the second active region.
    Type: Application
    Filed: July 13, 2006
    Publication date: May 17, 2007
    Inventors: Pei-Yu Chou, Min-Chieh Yang, Wen-Han Hung
  • Publication number: 20070093031
    Abstract: A method for increasing the removal rate of a photoresist layer used as an ion implant mask. The method includes performing a pre-treatment of a substrate, such as a plasma process, before forming the photoresist layer. The method can be applied to the fabrication of semiconductor devices for increasing the removal rate of the photoresist layer.
    Type: Application
    Filed: October 20, 2005
    Publication date: April 26, 2007
    Inventors: Wen-Hsien Huang, Min-Chieh Yang, Jiunn-Hsing Liao
  • Patent number: 6764863
    Abstract: The memory-storage node of the present invention includes a semiconductor substrate, a first insulating layer over the substrate, a conductive layer formed within the first insulating layer, and a barrier layer formed over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer. The memory-storage node further includes a first electrode over the barrier layer, a dielectric layer over the first electrode, and a second electrode over the dielectric layer. The method for fabricating the memory storage-node of the present invention provides a semiconductor substrate and forms a first insulating layer on the substrate. A first opening is formed in the first insulating layer and a conductive layer is provided in the first opening. A barrier layer is then formed in the first opening and over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: July 20, 2004
    Assignee: Winbond Electonics Corporation
    Inventors: Bor-Ru Sheu, Ming-Chung Chiang, Chung-Ming Chu, Min-Chieh Yang
  • Publication number: 20030173613
    Abstract: The memory-storage node of the present invention includes a semiconductor substrate, a first insulating layer over the substrate, a conductive layer formed within the first insulating layer, and a barrier layer formed over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer. The memory-storage node further includes a first electrode over the barrier layer, a dielectric layer over the first electrode, and a second electrode over the dielectric layer. The method for fabricating the memory storage-node of the present invention provides a semiconductor substrate and forms a first insulating layer on the substrate. A first opening is formed in the first insulating layer and a conductive layer is provided in the first opening. A barrier layer is then formed in the first opening and over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 18, 2003
    Applicant: Winbond Electronics Corporation
    Inventors: Bor-Ru Sheu, Ming-Chung Chiang, Chung-Ming Chu, Min-Chieh Yang
  • Patent number: 6563161
    Abstract: The memory-storage node of the present invention includes a semiconductor substrate, a first insulating layer over the substrate, a conductive layer formed within the first insulating layer, and a barrier layer formed over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer. The memory-storage node further includes a first electrode over the barrier layer, a dielectric layer over the first electrode, and a second electrode over the dielectric layer. The method for fabricating the memory storage-node of the present invention provides a semiconductor substrate and forms a first insulating layer on the substrate. A first opening is formed in the first insulating layer and a conductive layer is provided in the first opening. A barrier layer is then formed in the first opening and over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: May 13, 2003
    Assignee: Winbond Electronics Corporation
    Inventors: Bor-ru Sheu, Ming-Chung Chiang, Chung-Ming Chu, Min-Chieh Yang
  • Publication number: 20030075753
    Abstract: A stacked capacitor on a contact plug of a semiconductor substrate and the method for fabricating the same. A cylindrical conductive layer is formed upon a contact plug of a semiconductor substrate as a lower electrode of a stacked capacitor and there is an opening in the cylindrical conductive layer. A barrier layer is deposited inside the opening of the cylindrical conductive layer and fills a portion of the opening. A capacitor dielectric layer is deposited on the cylindrical conductive layer and on the barrier layer and an upper electrode layer is formed on the capacitor dielectric layer to complete the stacked capacitor.
    Type: Application
    Filed: September 13, 2002
    Publication date: April 24, 2003
    Inventors: Chung-Ming Chu, Masuhiro Kiyotoshi, Masatoshi Fukuda, Tosiya Suzuki, Min-Chieh Yang
  • Publication number: 20020109231
    Abstract: A capacitor formed on a conductive plug of a semiconductor substrate has a composite storage node, wherein a Ru conductive layer covers the conductive plug and a conductive oxide layer with a perovskite structure covers the Ru conductive layer. A capacitor dielectric layer covers the composite storage node. An electrode layer covers the capacitor dielectric layer.
    Type: Application
    Filed: June 20, 2001
    Publication date: August 15, 2002
    Applicant: Winbond Electronics Corp.
    Inventors: Chung-Ming Chu, Bor-Ru Sheu, Ming-Chung Chiang, Min-Chieh Yang, Wen-Chung Liu, Jong-Bor Wang, Pai-Hsuan Sun
  • Patent number: 6368910
    Abstract: A method for fabricating semiconductor memory cells such as dynamic random access memory (DRAM) and ferroelectric random access memory (FRAM) with improved contact between the capacitor electrode and the underneath device area. It includes the following main steps of: (1) forming a first dielectric layer on a wafer surface; (2) forming at least one through opening in the first dielectric layer; (3) forming a ruthenium based plug in the through opening; and (4) forming a capacitor in contact with the ruthenium based plug. The ruthenium based plug can be made of ruthenium metal, conductive ruthenium oxide, or a stack of conductive ruthenium oxide and ruthenium metal. The method allows the memory cell to be made without the need for a barrier, which is required to protect the storage electrode from reacting with Si atoms during the fabrication process.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: April 9, 2002
    Assignee: Winbond Electronics Corp.
    Inventors: Bor-Bu Sheu, Chung-Ming Chu, Ming-Chung Chiang, Min-Chieh Yang, Wen-Chung Liu, Jong-Bor Wang, Pai-Hsuan Sun