Patents by Inventor Min-Hsiang Hsu

Min-Hsiang Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210302650
    Abstract: Methods of fabricating optical devices with high refractive index materials are disclosed. The method includes forming a first oxide layer on a substrate and forming a patterned template layer with first and second trenches on the first oxide layer. A material of the patterned template layer has a first refractive index. The method further includes forming a first portion of a waveguide and a first portion of an optical coupler within the first and second trenches, respectively, forming a second portion of the waveguide and a second portion of the optical coupler on a top surface of the patterned template layer, and depositing a cladding layer on the second portions of the waveguide and optical coupler. The waveguide and the optical coupler include materials with a second refractive index that is greater than the first refractive index.
    Type: Application
    Filed: January 15, 2021
    Publication date: September 30, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Weiwei SONG, Chan-Hong Chern, Chih-Chang Lin, Stefan Rusu, Min-Hsiang Hsu
  • Patent number: 11126051
    Abstract: A pixel array substrate including a substrate, data lines, gate lines, pixels, and transfer lines is provided. The data lines are disposed on the substrate and arranged in a first direction. The gate lines are disposed on the substrate and arranged in a second direction interlaced with the first direction. The pixels are disposed on the substrate, each of which includes an active device electrically connected to one of the data lines and one of the gate lines and a pixel electrode electrically connected to the active device. The transfer lines are arranged in the first direction and electrically connected to the gate lines, respectively. The pixels include first pixels. In a top view of the pixel array substrate, at least one of the pixel electrodes of the first pixels is partially overlapped with one of the transfer lines. A driving method of a pixel array substrate is also provided.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: September 21, 2021
    Assignee: Au Optronics Corporation
    Inventors: Min-Tse Lee, Sheng-Yen Cheng, Yueh-Hung Chung, Kuang-Hsiang Liao, Yang-Chun Lee, Yan-Kai Wang, Ya-Ling Hsu, Yi-Ren Chen, Hung-Che Lin, Sheng-Ju Ho, Chien-Huang Liao, Chen-Hsien Liao
  • Patent number: 11126050
    Abstract: A pixel array substrate including a substrate, data lines, gate lines, pixels, and transfer lines is provided. The data lines are disposed on the substrate and arranged in a first direction. The gate lines are disposed on the substrate and arranged in a second direction interlaced with the first direction. The pixels are disposed on the substrate, each of which includes an active device electrically connected to one of the data lines and one of the gate lines and a pixel electrode electrically connected to the active device. The transfer lines are arranged in the first direction and electrically connected to the gate lines, respectively. The pixels include first pixels. In a top view of the pixel array substrate, at least one of the pixel electrodes of the first pixels is partially overlapped with one of the transfer lines. A driving method of a pixel array substrate is also provided.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: September 21, 2021
    Assignee: Au Optronics Corporation
    Inventors: Min-Tse Lee, Sheng-Yen Cheng, Yueh-Hung Chung, Kuang-Hsiang Liao, Yang-Chun Lee, Yan-Kai Wang, Ya-Ling Hsu, Yi-Ren Chen, Hung-Che Lin, Sheng-Ju Ho, Chien-Huang Liao, Chen-Hsien Liao
  • Publication number: 20210271147
    Abstract: Apparatus, circuits and methods for reducing mismatch in an electro-optic modulator are described herein. In some embodiments, a described optical includes: a splitter configured for splitting an input optical signal into a first optical signal and a second optical signal; a phase shifter coupled to the splitter; and a combiner coupled to the phase shifter. The phase shifter includes: a first waveguide arm configured for controlling a first phase of the first optical signal to generate a first phase-controlled optical signal, and a second waveguide arm configured for controlling a second phase of the second optical signal to generate a second phase-controlled optical signal. Each of the first and second waveguide arms includes: a plurality of straight segments and a plurality of curved segments. The combiner is configured for combining the first and second phase-controlled optical signals to generate an output optical signal.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Inventors: Lan-Chou CHO, Chewn-Pu JOU, Min-Hsiang HSU
  • Publication number: 20210231869
    Abstract: Integrated optical devices and methods of forming the same are disclosed. A method of forming an integrated optical device includes the following steps. A substrate is provided. The substrate includes, from bottom to top, a first semiconductor layer, an insulating layer and a second semiconductor layer. The second semiconductor layer is patterned to form a waveguide pattern. A surface smoothing treatment is performed to the waveguide pattern until a surface roughness Rz of the waveguide pattern is equal to or less than a desired value. A cladding layer is formed over the waveguide pattern.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Min-Hsiang Hsu
  • Publication number: 20210223489
    Abstract: Photonic devices and methods of manufacture are provided. In embodiments a fill material and/or a secondary waveguide are utilized in order to protect other internal structures such as grating couplers from the rigors of subsequent processing steps. Through the use of these structures at the appropriate times during the manufacturing process, damage and debris that would otherwise interfere with the manufacturing process of the device or operation of the device can be avoided.
    Type: Application
    Filed: July 16, 2020
    Publication date: July 22, 2021
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Chih-Hsuan Tai, Hua-Kuei Lin, Tsung-Yuan Yu, Min-Hsiang Hsu
  • Patent number: 11009663
    Abstract: Integrated optical devices and methods of forming the same are disclosed. A method of forming an integrated optical device includes the following steps. A substrate is provided. The substrate includes, from bottom to top, a first semiconductor layer, an insulating layer and a second semiconductor layer. The second semiconductor layer is patterned to form a waveguide pattern. A surface smoothing treatment is performed to the waveguide pattern until a surface roughness Rz of the waveguide pattern is equal to or less than a desired value. A cladding layer is formed over the waveguide pattern.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: May 18, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Min-Hsiang Hsu
  • Publication number: 20210088726
    Abstract: A photonic structure is provided. The photonic structure includes a semiconductor substrate, a buried oxide layer over the semiconductor substrate, an optical coupling region over the buried oxide layer, and an oxide structure embedded in the semiconductor substrate. The optical coupling region is tapered toward a terminus of the optical coupling region located at an edge of the semiconductor substrate. The optical coupling region overlaps the oxide structure in a plan view.
    Type: Application
    Filed: July 2, 2020
    Publication date: March 25, 2021
    Inventors: Chan-Hong CHERN, Min-Hsiang HSU
  • Publication number: 20210091245
    Abstract: The present disclosure provides a photo sensing device, the photo sensing device includes a substrate, including a silicon layer at a front surface, a photosensitive member extending into and at least partially surrounded by the silicon layer, and a superlattice layer disposed between the photosensitive member and the silicon layer, wherein the superlattice layer includes a first material and a second material different from the first material, a first concentration of the second material at a portion of the superlattice layer proximal to the photosensitive member is greater than a second concentration of the second material at a portion of the superlattice layer distal to the photosensitive member.
    Type: Application
    Filed: July 6, 2020
    Publication date: March 25, 2021
    Inventors: CHAN-HONG CHERN, WEIWEI SONG, CHIH-CHANG LIN, LAN-CHOU CHO, MIN-HSIANG HSU
  • Publication number: 20210063777
    Abstract: An optical modulator includes a dielectric layer and a waveguide. The waveguide is disposed on the dielectric layer. The waveguide includes an electrical coupling portion, a slab portion, and an optical coupling portion. The slab portion is sandwiched between the electrical coupling portion and the optical coupling portion. The slab portion has at least two sub-portions having different heights. A maximum height of the slab portion is smaller than a height of the electrical coupling portion.
    Type: Application
    Filed: November 11, 2020
    Publication date: March 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lan-Chou Cho, Chewn-Pu Jou, Feng-Wei Kuo, Huan-Neng Chen, Min-Hsiang Hsu
  • Publication number: 20210033791
    Abstract: Integrated optical devices and methods of forming the same are disclosed. A method of forming an integrated optical device includes the following steps. A substrate is provided. The substrate includes, from bottom to top, a first semiconductor layer, an insulating layer and a second semiconductor layer. The second semiconductor layer is patterned to form a waveguide pattern. A surface smoothing treatment is performed to the waveguide pattern until a surface roughness Rz of the waveguide pattern is equal to or less than a desired value. A cladding layer is formed over the waveguide pattern.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Min-Hsiang Hsu
  • Patent number: 10866440
    Abstract: An optical modulator includes a dielectric layer and a waveguide. The waveguide is disposed on the dielectric layer. The waveguide has a first region, a second region, and an optical coupling region between the first region and the second region. The waveguide located in the first region includes a first electrical coupling portion and a first slab portion connected to each other. The waveguide located in the second region includes a second electrical coupling portion and a second slab portion connected to each other. The waveguide located in the optical coupling region includes a first optical coupling portion and a second optical coupling portion. The first slab portion has at least two sub-portions having different heights. The second slab portion has at least two sub-portions having different heights.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lan-Chou Cho, Chewn-Pu Jou, Feng-Wei Kuo, Huan-Neng Chen, Min-Hsiang Hsu
  • Publication number: 20200310434
    Abstract: The present disclosure relates a vessel navigation system and method, including: (a) driving a vessel to sail along a sailing path including at least two nodes, the at least two nodes include a first node and a second node connected by a first line segment; (b) generating a first tracking point on the first line segment when a distance between the vessel and the first node being less than a first length, and driving the vessel to sail according to the first tracking point; (c) generating a second tracking point on the first line segment when a distance between the vessel and the first tracking point being less than the first length, and driving the vessel to sail according to the second tracking point; and (d) repeating the step (b) and step (c) until the vessel passes through each node. Thereby, the vessel completes the navigation of the sailing path.
    Type: Application
    Filed: March 31, 2019
    Publication date: October 1, 2020
    Inventors: FENG-YEANG CHUNG, CHING-CHIN TU, CHUN-HAN CHU, MIN-HSIANG HSU
  • Publication number: 20160032111
    Abstract: The present invention relates to provide an anticorrosive layer having a biomimetic surface nano microstructure and the application. The anticorrosive layer comprises a polymer and a nano-particle. Both of the nano-particle and the biomimetic surface nano microstructure are required for the anticorrosive layer to effectively enhance the anticorrosive performance.
    Type: Application
    Filed: September 3, 2014
    Publication date: February 4, 2016
    Inventors: Jui-Ming Yeh, Kung-Chin Chang, Chien-Hua Hsu, Wei-Fu Ji, Min-Hsiang Hsu, Hsin-I Lu, Mei-Chun Lai, Pei-Ju Liu, Tsao-Li Chuang, Yen Wei, Wei-Ren Liu, You-Rong Hsiao
  • Publication number: 20130276374
    Abstract: A sliding door is coupled to a casing having therein a receiving space, a port received in the receiving space, a first opening formed at the casing, and a first guide rail fixed to the casing to face the receiving space and positioned proximate to the first opening. The sliding door includes a frame body and a door body. The frame body is received in the receiving space and has a second guide rail, a resilient arm, and a second opening corresponding in position to the first opening. The door body is disposed between the casing and the frame body and slides along the first guide rail and the second guide rail to selectively block or unblock the first opening and the second opening. Accordingly, the sliding door structure is selectively opened or shut as needed, so as to protect the port.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 24, 2013
    Inventors: MIN-HSIANG HSU, CHING-FENG HSIEH
  • Patent number: 8431001
    Abstract: An ion sensor includes: a conductive base structure including a substrate and an electrode film formed on the substrate; a plurality of ion-sensitive nanorods protruding from the electrode film; and an encapsulant enclosing the conductive base structure, surrounding the ion-sensitive nanorods, and formed with a window for exposing the ion-sensitive nanorods. Each of the ion-sensitive nanorods has a conductive core and an ion-sensitive layer formed on and enclosing the conductive core. The ion-sensitive material exhibits an ion selectivity of absorbing an ion of interest thereon for inducing a surface potential corresponding to concentration of the ion of interest.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: April 30, 2013
    Assignee: National Chiao Tung University
    Inventors: Peichen Yu, Bing-Mau Chen, Chia-Hua Chang, Min-Hsiang Hsu, Chan-Hung Huang, Chen-Hao Kuo
  • Publication number: 20120048733
    Abstract: An ion sensor includes: a conductive base structure including a substrate and an electrode film formed on the substrate; a plurality of ion-sensitive nanorods protruding from the electrode film; and an encapsulant enclosing the conductive base structure, surrounding the ion-sensitive nanorods, and formed with a window for exposing the ion-sensitive nanorods. Each of the ion-sensitive nanorods has a conductive core and an ion-sensitive layer formed on and enclosing the conductive core. The ion-sensitive material exhibits an ion selectivity of absorbing an ion of interest thereon for inducing a surface potential corresponding to concentration of the ion of interest.
    Type: Application
    Filed: March 4, 2011
    Publication date: March 1, 2012
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Peichen Yu, Bing-Mau Chen, Chia-Hua Chang, Min-Hsiang Hsu, Chan-Hung Huang, Chen-Hao Kuo
  • Publication number: 20100307592
    Abstract: A three-dimensional ITO electrode and the method of fabricating the same are disclosed. The three-dimensional ITO electrode of the present invention has a conductive layer and a plurality of ITO nanorods formed on the conductive layer, wherein the length range of the ITO nanorods can vary from 10 nm to 1500 nm. The best length is about 50 nm-200 nm for organic solar cells. When applied into organic optoelectronic devices such as organic solar cells and organic light-emitting diodes (OLEDs), the three-dimensional structure of the ITO electrode may increase the contact area to the active layer, thus improving the electric current collecting efficiency and uniformity of current spreading (flowing). Also, an evaporator, a solar cell comprising the above three-dimensional ITO electrode, and the method of fabricating the solar cell are disclosed.
    Type: Application
    Filed: September 21, 2009
    Publication date: December 9, 2010
    Applicant: National Chiao Tung University
    Inventors: Chia-Hua Chang, Pei-Chen Yu, Min-Hsiang Hsu, Kung-Hwa Wei, Ming-Shin Su