Patents by Inventor Min TAO

Min TAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190280428
    Abstract: Configurable smart object systems with magnetic contacts and magnetic assembly are provided. Example systems implement machine learning based on neural networks that draw low power for use in smart phones, watches, drones, automobiles, and medical devices, for example. Example assemblies can be configured from pluggable, interchangeable modules that have compatible ports with magnetic electrical contacts for interconnecting and integrating functionally dissimilar sensor systems. The magnetic electrical contacts physically couple the interfaces together or to a motherboard socket while providing an electrical coupling across the coupled magnetic contacts. The magnetic electrical contacts may arrayed in a reversible configuration so that a module or plug connection is reversible. A controller may dynamically assign power, ground, and data channels to the magnetic electrical contacts on the fly as the system is configured or reconfigured.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 12, 2019
    Applicant: Xcelsis Corporation
    Inventors: Belgacem HABA, Ilyas MOHAMMED, Gabriel Z. GUEVARA, Min TAO
  • Publication number: 20190273016
    Abstract: Apparatus and method relating generally to electronics are disclosed. In one such an apparatus, a film assembly has an upper surface and a lower surface opposite the upper surface. A dielectric film of the film assembly has a structured profile along the upper surface or the lower surface for having alternating ridges and grooves in a corrugated section in an at rest state of the film assembly. Conductive traces of the film assembly conform to the upper surface or the lower surface in or on the dielectric film in the corrugated section.
    Type: Application
    Filed: September 20, 2018
    Publication date: September 5, 2019
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Gabriel Z. Guevara, Min Tao
  • Patent number: 10354945
    Abstract: Multi-surface edge pads for vertical mount packages and methods of making package stacks are provided. Example substrates for vertical surface mount to a motherboard have multi-surface edge pads. The vertical mount substrates may be those of a laminate-based FlipNAND. The multi-surface edge pads have cutouts or recesses that expose more surfaces and more surface area of the substrate for bonding with the motherboard. The cutouts in the edge pads allow more solder to be used between the attachment surface of the substrate and the motherboard. The placement and geometry of the resulting solder joint is stronger and has less internal stress than conventional solder joints for vertical mounting. In an example process, blind holes can be drilled into a thickness of a substrate, and the blind holes plated with metal. The substrate can be cut in half though the plated holes to provide two substrates with plated multi-surface edge pads including the cutouts for mounting to the motherboard.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: July 16, 2019
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Min Tao, Javier A. Delacruz, Hoki Kim, Akash Agrawal
  • Patent number: 10354976
    Abstract: Dies-on-package devices and methods therefor are disclosed. In a dies-on-package device, a first IC die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with respect to the first IC die. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first IC die, and around bases and shafts of the conductive lines. A plurality of second IC dies is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. The plurality of second IC dies are respectively coupled to the sets of the conductive lines in middle third portions respectively of the plurality of second IC dies for corresponding fan-in regions thereof.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: July 16, 2019
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20190113690
    Abstract: Hardened fiber optic connectors having a mechanical splice assembly are disclosed. The mechanical splice assembly is attached to a first end of an optical waveguide such as an optical fiber of a fiber optic cable by way of a stub optical fiber, thereby connectorizing the hardened connector. In one embodiment, the hardened connector includes an inner housing having two shells for securing a tensile element of the cable and securing the mechanical splice assembly so that a ferrule assembly may translate. Further assembly of the hardened connector has the inner housing fitting into a shroud of the hardened connector. The shroud aides in mating the hardened connector with a complimentary device and the shroud may have any suitable configuration. The hardened connector may also include features for fiber buckling, sealing, cable strain relief or a pre-assembly for ease of installation.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 18, 2019
    Inventors: Michael de Jong, Wolf Peter Kluwe, Daniel Leyva, JR., Min Tao
  • Publication number: 20190097362
    Abstract: Configurable smart object systems with standard connectors are provided. Example systems implement machine learning or neural networks that draw low power for use in appliances, smart phones, watches, drones, automobiles, and medical devices. Example assemblies have from pluggable, interchangeable modules that have compatible ports for interconnecting and integrating functionally dissimilar sensor systems. An example apparatus includes a pluggable module containing an artificial intelligence (AI) element and a standard connector, interface, plug, socket, or port. The AI element may be built into a plug or socket member of a connector, which may terminate at the connector. Or, the connector with AI may be a pass-through adapter that inserts AI inline in a system by plugging into an interface socket and extending an instance of the same socket that it plugged into. A magnetic attachment between the plug member and a corresponding socket member may secure the connection.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 28, 2019
    Inventors: Belgacem HABA, Ilyas MOHAMMED, Gabriel Z. GUEVARA, Min TAO
  • Publication number: 20190088633
    Abstract: Direct-bonded LED arrays and applications are provided. An example process fabricates a LED structure that includes coplanar electrical contacts for p-type and n-type semiconductors of the LED structure on a flat bonding interface surface of the LED structure. The coplanar electrical contacts of the flat bonding interface surface are direct-bonded to electrical contacts of a driver circuit for the LED structure. In a wafer-level process, micro-LED structures are fabricated on a first wafer, including coplanar electrical contacts for p-type and n-type semiconductors of the LED structures on the flat bonding interface surfaces of the wafer. At least the coplanar electrical contacts of the flat bonding interface are direct-bonded to electrical contacts of CMOS driver circuits on a second wafer.
    Type: Application
    Filed: March 13, 2018
    Publication date: March 21, 2019
    Applicant: Invensas Corporation
    Inventors: Min Tao, Liang Wang, Rajesh Katkar, Cyprian Emeka Uzoh
  • Publication number: 20190029132
    Abstract: Configurable smart object systems with methods of making modules and contactors are provided. Example systems implement machine learning based on neural networks that draw low power for use in smart phones, watches, drones, automobiles, and medical devices. Example assemblies can be configured from pluggable, interchangeable modules that have compatible ports for interconnecting and integrating functionally dissimilar sensor systems. An example method includes mounting an element of a configurable machine learning assembly on a substrate, creating at least one fold in the substrate, folding the substrate at the fold into a housing of a module of the configurable machine learning assembly, and adding a molding material to the housing to at least partially fill the module of the configurable machine learning assembly. The example module construction may also form contactors on folded edges of the module for making physical and electrical contact with other modules of the smart object machine learning assembly.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Belgacem HABA, Ilyas MOHAMMED, Gabriel Z. GUEVARA, Min TAO
  • Patent number: 10151887
    Abstract: Hardened fiber optic connectors having a mechanical splice assembly are disclosed. The mechanical splice assembly is attached to a first end of an optical waveguide such as an optical fiber of a fiber optic cable by way of a stub optical fiber, thereby connectorizing the hardened connector. In one embodiment, the hardened connector includes an inner housing having two shells for securing a tensile element of the cable and securing the mechanical splice assembly so that a ferrule assembly may translate. Further assembly of the hardened connector has the inner housing fitting into a shroud of the hardened connector. The shroud aides in mating the hardened connector with a complimentary device and the shroud may have any suitable configuration. The hardened connector may also include features for fiber buckling, sealing, cable strain relief or a pre-assembly for ease of installation.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 11, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Michael de Jong, Wolf Peter Kluwe, Daniel Leyva, Jr., Min Tao
  • Patent number: 9991233
    Abstract: Package-on-package (“PoP”) devices with same level wafer-level packaged (“WLP”) components and methods therefor are disclosed. In a PoP device, a first integrated circuit die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. The first conductive lines extend away from the upper surface of the package substrate. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first integrated circuit die, and around bases and shafts of the conductive lines. WLP microelectronic components are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 5, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9991235
    Abstract: Package-on-package (“PoP”) devices with upper RDLs of WLP (“WLP”) components and methods therefor are disclosed. In a PoP device, a first IC die is surface mount coupled to an upper surface of the package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with reference to the first IC. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located below a first RDL respectively thereof. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 5, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9985007
    Abstract: Package-on-package (“PoP”) devices with multiple levels and methods therefor are disclosed. In a PoP device, a first integrated circuit die is surface mount coupled to an upper surface of a package substrate. First and second conductive lines are coupled to the upper surface of the package substrate respectively at different heights in a fan-out region. A first molding layer is formed over the upper surface of the package substrate. A first and a second wafer-level packaged microelectronic component are located above an upper surface of the first molding layer respectively surface mount coupled to a first and a second set of upper portions of the first conductive lines. A third and a fourth wafer-level packaged microelectronic component are located above the first and the second wafer-level packaged microelectronic component respectively surface mount coupled to a first and a second set of upper portions of the second conductive lines.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 29, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9972609
    Abstract: Package-on-package (“PoP”) devices with WLP (“WLP”) components with dual RDLs (“RDLs”) for surface mount dies and methods therefor. In a PoP, a first IC die surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located between a first RDL and a second RDL. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 15, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9972573
    Abstract: Wafer-level packaged components are disclosed. In a wafer-level-packaged, an integrated circuit die has first contacts in an inner third region of a surface of the integrated circuit die. A redistribution layer has second contacts in an inner third region of a first surface of the redistribution layer and third contacts in an outer third region of a second surface of the redistribution layer opposite the first surface thereof. The second contacts of the redistribution layer are coupled for electrical conductivity to the first contacts of the integrated circuit die with the surface of the integrated circuit die face-to-face with the first surface of the redistribution layer. The third contacts are offset from the second contacts for being positioned in a fan-out region for association at least with the outer third region of the second surface of the redistribution layer, the third contacts being surface mount contacts.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 15, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180040587
    Abstract: Vertical memory modules enabled by fan-out redistribution layer(s) (RDLs) are provided. Memory dies may be stacked with each die having a signal pad directed to a sidewall of the die. A redistribution layer (RDL) is built on sidewalls of the stacked dies and coupled with the signal pads. The RDL may fan-out to UBM and solder balls, for example. An alternative process reconstitutes dies on a carrier with a first RDL on a front side of the dies. The dies and first RDL are encapsulated, and the modules vertically disposed for a second reconstitution on a second carrier. A second RDL is applied to exposed contacts of the vertically disposed modules and first RDLs. The vertical modules and second RDL are encapsulated in turn with a second mold material. The assembly may be singulated into individual memory modules, each with a fan-out RDL on the sidewalls of the vertically disposed dies.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 8, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Zhuowen Sun, Belgacem Haba, Hoki Kim, Wael Zohni, Shaowu Huang
  • Publication number: 20180040544
    Abstract: Multi-surface edge pads for vertical mount packages and methods of making package stacks are provided. Example substrates for vertical surface mount to a motherboard have multi-surface edge pads. The vertical mount substrates may be those of a laminate-based FlipNAND. The multi-surface edge pads have cutouts or recesses that expose more surfaces and more surface area of the substrate for bonding with the motherboard. The cutouts in the edge pads allow more solder to be used between the attachment surface of the substrate and the motherboard. The placement and geometry of the resulting solder joint is stronger and has less internal stress than conventional solder joints for vertical mounting. In an example process, blind holes can be drilled into a thickness of a substrate, and the blind holes plated with metal. The substrate can be cut in half though the plated holes to provide two substrates with plated multi-surface edge pads including the cutouts for mounting to the motherboard.
    Type: Application
    Filed: July 26, 2017
    Publication date: February 8, 2018
    Applicant: Invensas Corporation
    Inventors: Rajesh Emeka Katkar, Min Tao, Javier A. Delacruz, Hoki Kim, Akash Agrawal
  • Publication number: 20180026011
    Abstract: Package-on-package (“PoP”) devices with same level wafer-level packaged (“WLP”) components and methods therefor are disclosed. In a PoP device, a first integrated circuit die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. The first conductive lines extend away from the upper surface of the package substrate. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first integrated circuit die, and around bases and shafts of the conductive lines. WLP microelectronic components are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180026019
    Abstract: Package-on-package (“PoP”) devices with WLP (“WLP”) components with dual RDLs (“RDLs”) for surface mount dies and methods therefor. In a PoP, a first IC die surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located between a first RDL and a second RDL. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180026018
    Abstract: Package-on-package (“PoP”) devices with multiple levels and methods therefor are disclosed. In a PoP device, a first integrated circuit die is surface mount coupled to an upper surface of a package substrate. First and second conductive lines are coupled to the upper surface of the package substrate respectively at different heights in a fan-out region. A first molding layer is formed over the upper surface of the package substrate. A first and a second wafer-level packaged microelectronic component are located above an upper surface of the first molding layer respectively surface mount coupled to a first and a second set of upper portions of the first conductive lines. A third and a fourth wafer-level packaged microelectronic component are located above the first and the second wafer-level packaged microelectronic component respectively surface mount coupled to a first and a second set of upper portions of the second conductive lines.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180026017
    Abstract: Dies-on-package devices and methods therefor are disclosed. In a dies-on-package device, a first IC die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with respect to the first IC die. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first IC die, and around bases and shafts of the conductive lines. A plurality of second IC dies is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. The plurality of second IC dies are respectively coupled to the sets of the conductive lines in middle third portions respectively of the plurality of second IC dies for corresponding fan-in regions thereof.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba