Patents by Inventor Mina A. Rezk

Mina A. Rezk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11366200
    Abstract: A set of signals are sampled at the LiDAR system and the set of signals are converted to a frequency domain to generate a set of sampled signals in the frequency domain. The set of signals are received consecutively over time. A set of first functions are created based on the set of sampled signals. The set of first functions are averaged to generate a second function. The second function represents a power spectrum density estimate of the set of signals. A peak value of the second function is detected to determine range and velocity information related to a target based on a corresponding frequency of the peak value of the second function.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: June 21, 2022
    Assignee: Aeva, Inc.
    Inventors: Jose Krause Perin, Mina Rezk, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti
  • Patent number: 11366206
    Abstract: A light detection and ranging (LIDAR) apparatus includes an optical circuit including a laser source configured to emit a laser beam, a beam separator operatively coupled to the laser source, the beam separator configured to separate the laser beam propagated towards a target, a first optical amplifier coupled to the beam separator, the first optical amplifier configured to receive a return laser beam reflected from the target in a return path and amplify the return laser beam to output an amplified return laser beam, and an optical component operatively coupled to the first optical amplifier, the optical component configured to output a current based on the amplified return laser beam.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 21, 2022
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk
  • Patent number: 11360214
    Abstract: A light detection and ranging (LIDAR) system to transmit optical beams including at least up-chirp frequency and at least one down-chirp frequency toward targets in a field of view of the LIDAR system and receive returned signals of the up-chirp and the down-chirp as reflected from the targets. The LIDAR system generates a baseband signal in a frequency domain of the returned signals of the at least one up-chirp frequency and the at least one down-chirp frequency. The baseband signal includes a first set of peaks associated with the at least the at least one up-chirp frequency and a second set of peaks associated with the at least one down-chirp frequency. The LIDAR system determines the target location using the first set of peaks and the second set of peaks.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: June 14, 2022
    Assignee: Aeva, Inc.
    Inventors: Esha John, Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11360219
    Abstract: A return signal associated with a frequency modulated continuous wave (FMCW) optical beam is received. A correction for Doppler scanning artifacts in the return signal is made. A determination as to whether the return signal is caused by an obstruction on or proximate to a LIDAR window is made. A field of view (FOV) reflectivity map is generated based on the determination. The FOV reflectivity map is analyzed by identifying an obstructed FOV of the LIDAR system and determining a reflected energy from the obstructed FOV.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: June 14, 2022
    Assignee: Aeva, Inc.
    Inventors: Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20220163669
    Abstract: A light detection and ranging (LiDAR) system according to the present disclosure comprises an optical circulator and one or more photodetectors (PDs). The optical circulator is to transmit the target return signal to the one or more PDs, where the one or more PDs are to mix the target return signal with a local oscillator (LO) signal to generate a signal to extract information of the target.
    Type: Application
    Filed: May 19, 2021
    Publication date: May 26, 2022
    Inventors: Gautam Prabhakar, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Kevin Pollock, Pierre Hicks, Mina Rezk
  • Publication number: 20220155426
    Abstract: A light detection and ranging (LiDAR) system includes a first optical source and a second optical source configured to emit respectively a first optical beam and a second optical beam that have opposite polarizations. The LiDAR system further includes a beam combining component to combine the first optical beam and the second optical beam into a single spatial mode optical beam and a first beam splitting component to split the single spatial mode optical beam into a plurality of single spatial mode optical beams.
    Type: Application
    Filed: February 7, 2022
    Publication date: May 19, 2022
    Inventor: Mina Rezk
  • Publication number: 20220155427
    Abstract: A frequency modulated continuous wave (FMCW) light detection and ranging (LIDAR) system includes a memory and a processor, operatively coupled to the memory, to generate a set of frequency subbands in a time domain based on an electrical signal from one or more optical detectors and filter the set of frequency subbands in the time domain based on one or more characteristics of each of the set of frequency subbands to obtain a subset of the set of frequency subbands based on at least two separate signal thresholds. The processor is further to convert the subset of the plurality of frequency subbands in the time domain to one or more subband signals in a frequency domain and detect signal peaks in the one or more subband signals in the frequency domain corresponding to target ranges in a field of view of the FMCW LIDAR system.
    Type: Application
    Filed: February 2, 2022
    Publication date: May 19, 2022
    Inventors: Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Jose Krause Perin, Mina Rezk
  • Publication number: 20220146675
    Abstract: An electro-optical system has a laser drive electronic circuit, a laser light source and an optical interferometer, forming a closed loop. The laser drive electronic circuit is arranged to receive a reference frequency as input, and a beat frequency as feedback. The laser drive electronic circuit generates a drive output based on a phase difference between the reference frequency and the beat frequency. The optical interferometer, coupled to the laser light, generates optical energy at the beat frequency.
    Type: Application
    Filed: August 20, 2021
    Publication date: May 12, 2022
    Inventors: Bryce Bradford, Mina Rezk
  • Publication number: 20220146633
    Abstract: A light detection and ranging (LIDAR) system includes a first optical source to generate a first optical beam, a first collimating lens to collimate the first optical beam, a first prism wedge of a first prism wedge pair to redirect the first optical beam, and a first focusing lens to focus the first optical beam on a front surface of a second prism wedge of the first prism wedge pair, the second prism wedge to direct the first optical beam toward an output lens.
    Type: Application
    Filed: August 18, 2021
    Publication date: May 12, 2022
    Inventors: Keith Gagne, Mina Rezk
  • Publication number: 20220146631
    Abstract: A first signal is sampled at the LiDAR system to produce a first set of samples around a first detected frequency peak related to the first signal. A second signal is sampled at the LiDAR system to produce a second set of samples around a second detected frequency peak related to the second signal. A first function based on the first set of samples and a second function based on the second set of samples are convolved to produce a third function. At least one of the first signal or the second signal is refined to produce at least one of a first refined signal or a second refined signal based on the third function. Range and velocity information is extracted related to a target based on the at least one of the first refined signal or the second refined signal.
    Type: Application
    Filed: January 27, 2022
    Publication date: May 12, 2022
    Inventors: Jose Krause Perin, Mina Rezk, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti
  • Patent number: 11327158
    Abstract: A received signal is sampled at the LiDAR system and the received signal is converted to a frequency domain, where the received signal comprises a first frequency waveform. A matched filter is selected, where the matched filter comprises a second frequency waveform with a set of coefficients to match the first frequency waveform. The set of coefficients are updated according to a set of metrics. The received signal is filtered by the matched filter to generate a filtered received signal. Range and velocity information is extracted from the filtered received signal.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: May 10, 2022
    Assignee: Aeva, Inc.
    Inventors: Jose Krause Perin, Mina Rezk, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti
  • Publication number: 20220137216
    Abstract: A light detection and ranging (LIDAR) system is provided that includes a first optical source and a second optical source configured to emit respectively a first optical beam and a second optical beam that are nondegenerate and are chirped antiphase and at least one tap configured to split each of the first optical beam and the second optical beam to generate a first local oscillator and a second local oscillator.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Inventors: Mina Rezk, Neal Oza
  • Publication number: 20220137198
    Abstract: A LIDAR system includes an optical source and multiple waveguides at different positions within the LIDAR system to receive a return signal. A first waveguide receives a first portion of the return signal at a first angle relative to the scanning mirror and a second waveguide receives a second portion of the return signal at a second angle relative to the scanning mirror. The system further includes multiple optical detectors at different positions within the LIDAR system. A first optical detector receives the first portion of the return signal from the first waveguide and a second optical detector receives the second portion of the return signal from the second waveguide. The system further includes a signal processing system operatively coupled to the plurality of optical detectors to determine a distance and velocity of the target object based on the returned signal and corresponding positions of the plurality of waveguides.
    Type: Application
    Filed: May 13, 2021
    Publication date: May 5, 2022
    Inventors: Ehsan Hamidi, Behsan Behzadi, Pradeep Srinivasan, Mina Rezk
  • Patent number: 11320522
    Abstract: A light detection and ranging (LIDAR) system uses optical sources to emit a continuous-wave (CW) optical beam and a frequency-modulated (FMCW) optical beam. A first set off optical components is coupled with the optical sources to generate a CW local oscillator (LO) signal from the CW optical beam, to generate an FMCW LO signal from the FMCW optical beam, and to combine the CW optical beam and the FMCW optical beam into a combined optical beam. A second set of optical components is coupled with the first set of optical components, to transmit the combined optical beam toward a target environment and to receive a target return signal from the target environment. A third set of optical components is coupled with the second set of optical components, to generate and detect a target velocity component of the target return signal and a target range component of the target return signal.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 3, 2022
    Assignee: Aeva, Inc.
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Publication number: 20220128665
    Abstract: A method includes transmitting one or more optical beams, each optical beam including different frequency chirps towards targets in a field of view of a light detection and ranging (LIDAR) system, receiving return signals based on reflections from the targets, each return signal including a different frequency, and generating a baseband signal in a frequency domain based on the return signals, the baseband signal including a first set of peaks each associated with a different up-chirp frequency and a second set of peaks each associated with a different down-chirp frequency. The method further includes generating one or more metrics associated with each of the first set of peaks and each of the second set of peaks and identifying the targets based on a pairing of each peak of the first set of peaks with a peak of the second set of peaks using the one or more metrics.
    Type: Application
    Filed: June 4, 2021
    Publication date: April 28, 2022
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11313955
    Abstract: A method includes transmitting one or more optical beams, each optical beam including different frequency chirps towards targets in a field of view of a light detection and ranging (LIDAR) system, receiving return signals based on reflections from the targets, each return signal including a different frequency, and generating a baseband signal in a frequency domain based on the return signals, the baseband signal including a first set of peaks each associated with a different up-chirp frequency and a second set of peaks each associated with a different down-chirp frequency. The method further includes generating one or more metrics associated with each of the first set of peaks and each of the second set of peaks and identifying the targets based on a pairing of each peak of the first set of peaks with a peak of the second set of peaks using the one or more metrics.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: April 26, 2022
    Assignee: Aeva, Inc.
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20220120879
    Abstract: A set of POIs of a point cloud are received at a first filter, where each POI of the set of POIs comprises one or more points. Each POI of the set of POIs is filtered. A set of neighborhood points of a POI is selected. A metric for the set of neighborhood points is computed. Based on the metric, whether to accept the POI, modify the POI, reject the POI, or transmit the POI to a second filter, to extract at least one of range or velocity information related to the target is determined. Provided the POI is accepted or modified, the POI is transmitted to a filtered point cloud; provided the POI is rejected, the POI is prevented from reaching the filtered point cloud; provided the POI is not accepted, modified, or rejected, the POI is transmitted to a second filter.
    Type: Application
    Filed: August 10, 2021
    Publication date: April 21, 2022
    Inventors: Krishna Toshniwal, Mina Rezk, Bruno Hexsel, Kumar Bhargav Viswanatha, Jose Krause Perin, Rajendra Tushar Moorti, James Nakamura
  • Publication number: 20220120903
    Abstract: A method of adjusting a detection threshold in a frequency-modulated continuous wave (FMCW) light detection and ranging (LIDAR) system includes determining a first confidence threshold for detecting a first target from multiple targets within a frequency range, wherein the frequency range comprises frequencies corresponding to the targets. The method further includes determining a subset of frequencies within the frequency range for detecting a second target. The second target transmits signals within the subset of frequencies lower than the first confidence threshold. The method further includes adjusting the first confidence threshold to a second confidence threshold at the subset of frequencies for detecting the second target within the subset of frequencies and restoring the second confidence threshold to the first confidence threshold outside the subset of frequencies for detecting the first target.
    Type: Application
    Filed: June 4, 2021
    Publication date: April 21, 2022
    Inventors: Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20220120860
    Abstract: A received signal is sampled at the LiDAR system and the received signal is converted to a frequency domain, where the received signal comprises a first frequency waveform. A matched filter is selected, where the matched filter comprises a second frequency waveform with a set of coefficients to match the first frequency waveform. The set of coefficients are updated according to a set of metrics. The received signal is filtered by the matched filter to generate a filtered received signal. Range and velocity information is extracted from the filtered received signal.
    Type: Application
    Filed: June 22, 2021
    Publication date: April 21, 2022
    Inventors: Jose Krause Perin, Mina Rezk, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti
  • Publication number: 20220123052
    Abstract: A light detection and ranging (LIDAR) system is provided that includes an optical source to generate and transmit an optical beam, an optical fiber to guide the optical beam to a fiber tip from which the optical beam is emitted, and a first scanning mirror rotatable along at least one axis to steer the optical beam to scan a scene, and collect light incident upon objects in the scene. The system further includes a first lens, disposed between the optical fiber and the first scanning mirror, to focus the optical beam emitted from the optical fiber to converge at a location near a center of rotation of the first scanning mirror, the first scanning mirror to reflect the optical beam towards an optic, the optic, disposed between the first scanning mirror and the scene, to collimate or focus the optical beam reflected from the first scanning mirror, and a signal processor to determine a range of one or more of the objects from a return signal reflected from the one or more of the objects.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventors: Mina Rezk, Keith Gagne, Neal N. Oza, Omer P. Kocaoglu