Patents by Inventor Ming C. Wu

Ming C. Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240027396
    Abstract: Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
    Type: Application
    Filed: May 25, 2023
    Publication date: January 25, 2024
    Inventors: Kevin T. Chapman, Igor Y. Khandros, Gaetan L. Mathieu, J. Tanner Nevill, Ming C. Wu
  • Publication number: 20220016626
    Abstract: Microfluidic devices in which electrokinetic mechanisms move droplets of a liquid or particles in a liquid are described. The devices include at least one electrode that is optically transparent and/or flexible.
    Type: Application
    Filed: August 13, 2021
    Publication date: January 20, 2022
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Pei-Yu E. Chiou, Kuo-Wei Huang, Igor Y. Khandros, Ming C. Wu
  • Patent number: 11192107
    Abstract: A microfluidic apparatus can comprise a dielectrophoresis (DEP) configured section for holding a first liquid medium and selectively inducing net DEP forces in the first liquid medium. The microfluidic apparatus can also comprise an electrowetting (EW) configured section for holding a second liquid medium on an electrowetting surface and selectively changing an effective wetting property of the electrowetting surface. The DEP configured section can be utilized to select and move a micro-object in the first liquid medium. The EW configured section can be utilized to pull a droplet of the first liquid medium into the second liquid medium.
    Type: Grant
    Filed: April 25, 2015
    Date of Patent: December 7, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Igor Y. Khandros, J. Tanner Nevill, Steven W. Short, Ming C. Wu
  • Patent number: 11148139
    Abstract: Microfluidic devices in which electrokinetic mechanisms move droplets of a liquid or particles in a liquid are described. The devices include at least one electrode that is optically transparent and/or flexible.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: October 19, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Pei-Yu E. Chiou, Kuo-Wei Huang, Igor Y. Khandros, Ming C. Wu
  • Patent number: 11143818
    Abstract: Embodiments include apparatuses, methods, and systems including a laser device having a 1×3 MMI coupler within a semiconductor layer. A front arm is coupled to the MMI coupler and terminated by a front reflector. In addition, a coarse tuning arm is coupled to the MMI coupler and terminated by a first back reflector for coarse wavelength tuning, a fine tuning arm is coupled to the MMI coupler and terminated by a second back reflector for fine wavelength tuning, and a SMSR and power tuning arm is coupled to the MMI coupler and terminated by a third back reflector. A gain region is above the front arm and above the semiconductor layer. Other embodiments may also be described and claimed.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 12, 2021
    Assignees: INTEL CORPORATION, REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Meer Nazmus Sakib, Guan-Lin Su, John Heck, Haisheng Rong, Ming C. Wu
  • Publication number: 20200284756
    Abstract: Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
    Type: Application
    Filed: May 7, 2020
    Publication date: September 10, 2020
    Inventors: Kevin T. Chapman, Igor Y. Khandros, Gaetan L. Mathieu, J. Tanner Nevill, Ming C. Wu
  • Patent number: 10690628
    Abstract: Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: June 23, 2020
    Assignee: Berkeley Lights, Inc
    Inventors: Kevin T. Chapman, Igor Y. Khandros, Gaetan L. Mathieu, J. Tanner Nevill, Ming C. Wu
  • Publication number: 20190388890
    Abstract: Microfluidic devices in which electrokinetic mechanisms move droplets of a liquid or particles in a liquid are described. The devices include at least one electrode that is optically transparent and/or flexible.
    Type: Application
    Filed: April 29, 2019
    Publication date: December 26, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Pei-Yu E. Chiou, Kuo-Wei Huang, Igor Y. Khandros, Ming C. Wu
  • Publication number: 20190324210
    Abstract: Embodiments include apparatuses, methods, and systems including a laser device having a 1×3 MMI coupler within a semiconductor layer. A front arm is coupled to the MMI coupler and terminated by a front reflector. In addition, a coarse tuning arm is coupled to the MMI coupler and terminated by a first back reflector for coarse wavelength tuning, a fine tuning arm is coupled to the MMI coupler and terminated by a second back reflector for fine wavelength tuning, and a SMSR and power tuning arm is coupled to the MMI coupler and terminated by a third back reflector. A gain region is above the front arm and above the semiconductor layer. Other embodiments may also be described and claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Meer Nazmus Sakib, Guan-Lin Su, John Heck, Haisheng Rong, Ming C. Wu
  • Patent number: 10245588
    Abstract: A structure for providing a boundary for a chamber in a microfluidic apparatus can comprise dielectrophoresis (DEP) configurations each having an outer surface and electrowetting (EW) configurations each having an electrowetting surface. The DEP configurations can facilitate generating net DEP forces with respect to the outer surfaces of the DEP configurations to move micro-objects on the outer surfaces, and the EW configurations can facilitate changing wetting properties of the electrowetting surfaces to move droplets of liquid medium on the electrowetting surfaces.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: April 2, 2019
    Assignee: Berkeley Lights, Inc.
    Inventors: Igor Y. Khandros, Daniele Malleo, J. Tanner Nevill, Steven W. Short, Ming C. Wu
  • Publication number: 20180259482
    Abstract: Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
    Type: Application
    Filed: December 14, 2017
    Publication date: September 13, 2018
    Inventors: Kevin T. Chapman, Igor Y. Khandros, Gaetan L. Mathieu, J. Tanner Nevill, Ming C. Wu
  • Patent number: 10061085
    Abstract: An optical switching system comprising a switching cell having first and second fixed-position bus waveguides and a moveable shunt waveguide is disclosed. The first bus waveguide includes an input and a first output. The second bus waveguide includes a second output. When the switching cell is in its unswitched state, the shunt waveguide is not optically coupled with either bus waveguide and a light signal can pass from the input to the first output while remaining in the first bus waveguide. When the switching cell is in its switched state, the shunt waveguide is optically coupled with both bus waveguides such that the light signal is coupled out of the first bus waveguide and into the second bus waveguide via the shunt waveguide. As a result, the light signal can pass from the input to the second output while bypassing the first input.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: August 28, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ming C. Wu, Sangyoon Han, Tae Joon Seok, Niels Quack, Byung-Wook Yoo
  • Publication number: 20180126380
    Abstract: A structure for providing a boundary for a chamber in a microfluidic apparatus can comprise dielectrophoresis (DEP) configurations each having an outer surface and electrowetting (EW) configurations each having an electrowetting surface. The DEP configurations can facilitate generating net DEP forces with respect to the outer surfaces of the DEP configurations to move micro-objects on the outer surfaces, and the EW configurations can facilitate changing wetting properties of the electrowetting surfaces to move droplets of liquid medium on the electrowetting surfaces.
    Type: Application
    Filed: June 29, 2017
    Publication date: May 10, 2018
    Inventors: Igor Y. Khandros, Daniele Malleo, J. Tanner Nevill, Steven W. Short, Ming C. Wu
  • Patent number: 9895699
    Abstract: A microfluidic optoelectronic tweezers (OET) device can comprise dielectrophoresis (DEP) electrodes that can be activated and deactivated by controlling a beam of light directed onto photosensitive elements that are disposed in locations that are spaced apart from the DEP electrodes. The photosensitive elements can be photodiodes, which can switch the switch mechanisms that connect the DEP electrodes to a power electrode between an off state and an on state.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: February 20, 2018
    Assignee: Berkeley Lights, Inc.
    Inventors: Steven W. Short, Ming C. Wu
  • Patent number: 9857333
    Abstract: Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: January 2, 2018
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, Igor Y. Khandros, Gaetan L. Mathieu, J. Tanner Nevill, Ming C. Wu
  • Publication number: 20170043343
    Abstract: A microfluidic apparatus can comprise a dielectrophoresis (DEP) configured section for holding a first liquid medium and selectively inducing net DEP forces in the first liquid medium. The microfluidic apparatus can also comprise an electrowetting (EW) configured section for holding a second liquid medium on an electrowetting surface and selectively changing an effective wetting property of the electrowetting surface. The DEP configured section can be utilized to select and move a micro-object in the first liquid medium. The EW configured section can be utilized to pull a droplet of the first liquid medium into the second liquid medium.
    Type: Application
    Filed: April 25, 2015
    Publication date: February 16, 2017
    Inventors: Igor Y. KHANDROS, J. Tanner NEVILL, Steven W. SHORT, Ming C. WU
  • Publication number: 20160327751
    Abstract: An optical switching system comprising a switching cell having first and second fixed-position bus waveguides and a moveable shunt waveguide is disclosed. The first bus waveguide includes an input and a first output. The second bus waveguide includes a second output. When the switching cell is in its unswitched state, the shunt waveguide is not optically coupled with either bus waveguide and a light signal can pass from the input to the first output while remaining in the first bus waveguide. When the switching cell is in its switched state, the shunt waveguide is optically coupled with both bus waveguides such that the light signal is coupled out of the first bus waveguide and into the second bus waveguide via the shunt waveguide. As a result, the light signal can pass from the input to the second output while bypassing the first input.
    Type: Application
    Filed: January 9, 2015
    Publication date: November 10, 2016
    Inventors: Ming C. WU, Sangyoon HAN, Tae Joon SEOK, Niels QUACK, Byung-Wook YOO
  • Publication number: 20160318038
    Abstract: A microfluidic optoelectronic tweezers (OET) device can comprise dielectrophoresis (DEP) electrodes that can be activated and deactivated by controlling a beam of light directed onto photosensitive elements that are disposed in locations that are spaced apart from the DEP electrodes. The photosensitive elements can be photodiodes, which can switch the switch mechanisms that connect the DEP electrodes to a power electrode between an off state and an on state.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 3, 2016
    Inventors: Steven W. Short, Ming C. Wu
  • Patent number: 9403172
    Abstract: A microfluidic optoelectronic tweezers (OET) device can comprise dielectrophoresis (DEP) electrodes that can be activated and deactivated by controlling a beam of light directed onto photosensitive elements that are disposed in locations that are spaced apart from the DEP electrodes. The photosensitive elements can be photodiodes, which can switch the switch mechanisms that connect the DEP electrodes to a power electrode between an off state and an on state.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: August 2, 2016
    Assignee: Berkeley Lights, Inc.
    Inventors: Steven W. Short, Ming C. Wu
  • Publication number: 20160151784
    Abstract: Microfluidic devices in which electrokinetic mechanisms move droplets of a liquid or particles in a liquid are described. The devices include at least one electrode that is optically transparent and/or flexible.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 2, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Pei-Yu E. Chiou, Kuo-Wei Huang, Igor Y. Khandros, Ming C. Wu